17.已知P為圓M:(x+2)2+y2=4上的動點(diǎn),N(2,0),線段PN的垂直平分線與直線PM的交點(diǎn)為Q,點(diǎn)Q的軌跡方程為x2-$\frac{{y}^{2}}{3}$=1.

分析 由中垂線的性質(zhì)可知|QN|=|PQ|,故而||QN|-|QM||=||PQ|-|QM||=|PM|=2,所以Q的軌跡為以M,N為焦點(diǎn)的雙曲線.

解答 解:∵Q在PN的中垂線上,∴|QN|=|PQ|,∴||QN|-|QM||=||PQ|-|QM||=|PM|=2,
∴Q的軌跡為以M,N為焦點(diǎn)的雙曲線.
設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$,則$\left\{\begin{array}{l}{c=2}\\{2a=2}\end{array}\right.$,又∵a2+b2=c2,∴a2=1,b2=3,
∴點(diǎn)Q的軌跡方程為x2-$\frac{{y}^{2}}{3}$=1.
故答案為x2-$\frac{{y}^{2}}{3}$=1.

點(diǎn)評 本題考查了雙曲線的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在棱長為2的正方體ABCD-A1B1C1D1中,點(diǎn)P是正方體棱上的一點(diǎn)(不包括棱的端點(diǎn)),滿足|PB|+|PD1|=$2\sqrt{5}$的點(diǎn)P的個數(shù)為12;若滿足|PB|+|PD1|=m的點(diǎn)P的個數(shù)為6,則m的取值范圍是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)F1(-$\sqrt{13}$,0)和點(diǎn)F2($\sqrt{13}$,0)是橢圓E的兩個焦點(diǎn),且點(diǎn)A(0,6)在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上的一點(diǎn),若|PF2|=4,求以線段PF1為直徑的圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下四個命題:
①若函數(shù)y=ex-mx(x∈R)有大于零的極值點(diǎn),則實(shí)數(shù)m>1;
②若拋物線x2=4y上一點(diǎn)M到焦點(diǎn)的距離為3,則點(diǎn)M到x軸的距離為2;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知函數(shù)f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則$\frac{a}$的值為-2或-$\frac{2}{3}$.
其中真命題的序號為①②③(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.運(yùn)行如圖的程序后,輸出的結(jié)果為( 。
A.$\frac{53}{60}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的左,右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),點(diǎn)P為橢圓上任意一點(diǎn),且△PF1F2的內(nèi)切圓面積的最大值為$\frac{1}{3}$π.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線l:y=kx+b(k>0,b>0)是圓O:x2+y2=3的一條切線,且l與橢圓C交于不同的兩點(diǎn)A,B.若弦AB的長為$\frac{4\sqrt{6}}{7}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點(diǎn)為-1和1,求實(shí)數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個實(shí)數(shù)根分別在區(qū)間(-3,-2),(0,1)內(nèi),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={1,2,3},則B={x-y|x∈A,y∈A}中的元素個數(shù)為( 。
A.9B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(α=2b>0),直線l過點(diǎn)A(2a,0),B(0,2b),原點(diǎn)O到直線AB的距離為$\frac{4\sqrt{5}}{5}$.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)P(0,2)的直線l與橢圓交于N,M兩點(diǎn),且使$\overrightarrow{QM}$=(λ+1)$\overrightarrow{QN}$-$λ\overrightarrow{QP}$成立(Q為直線l外的一點(diǎn),λ>0)?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案