12.若曲線y=e-x上點(diǎn)P處的切線垂直于直線x-2y+1=0,則點(diǎn)P的坐標(biāo)是( 。
A.(-2,ln2)B.(2,-ln2)C.(-ln2,2)D.(ln2,-2)

分析 設(shè)P(x,y),求出函數(shù)的導(dǎo)數(shù),由在點(diǎn)P處的切線垂直于直線x-2y+1=0,求出x并代入解析式求出y.

解答 解:設(shè)P(x,y),由題意得y′=-e-x,
∵曲線y=e-x上點(diǎn)P處的切線垂直于直線x-2y+1=0,
∴-e-x=-2,解得x=-ln2,
∴y=e-x=2,故P(-ln2,2).
故選:C.

點(diǎn)評 本題考查了導(dǎo)數(shù)的幾何意義,即點(diǎn)P處的切線的斜率是該點(diǎn)出的導(dǎo)數(shù)值,以及切點(diǎn)在曲線上和切線上的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={0,2,3},B={x|x=ab,a,b∈A且a≠b},則B的子集有4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-2$|\begin{array}{l}{x}\end{array}|$
(1)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;(不用列表,直接畫出草圖.)
(2)根據(jù)圖象,直接寫出函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于x的方程f(x)-m=0有四個解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.
(1)設(shè){bn}是7項(xiàng)的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項(xiàng);
(2)設(shè){cn}是49項(xiàng)的“對稱數(shù)列”,其中c25,c26,…,c49是首項(xiàng)為1,公比為2的等比數(shù)列,求{cn}各項(xiàng)的和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,三邊a,b,c成等差數(shù)列,且$B=\frac{π}{4}$,則(cosA-cosC)2的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xoy中,拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A(4,m)在拋物線上,且|AF|=5.
(1)求拋物線的標(biāo)準(zhǔn)方程.
(2)是否存在直線l,使l過點(diǎn)(0,1),并與拋物線交于B,C兩點(diǎn),且滿足$\overrightarrow{OB}$•$\overrightarrow{OC}$=0?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{{x}^{2}+x+1}{{x}^{2}+1}$,若f(a)=$\frac{4}{3}$,則f(-a)=(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.記不等式組$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面區(qū)域?yàn)镈,若直線y=a(x+1)與D沒有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{2}$)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=ln(x2-x-2)的定義域是(-∞,-1)∪(2,+∞).

查看答案和解析>>

同步練習(xí)冊答案