分析 由題意可得a+c=2b,由正弦定理可得$sinA+sinC=2sinB=\sqrt{2}$,進(jìn)而由三角函數(shù)公式可得.
解答 解:∵a,b,c成等差數(shù)列,∴a+c=2b,
由正弦定理可得$sinA+sinC=2sinB=\sqrt{2}$,
∵(cosA-cosC)2+(sinA+sinC)2=2-2cos(A+C),
∴${(cosA-cosC)^2}=2-2×cos\frac{3π}{4}-{\sqrt{2}^2}=\sqrt{2}$,
故答案為:$\sqrt{2}$.
點(diǎn)評 本題考查等差數(shù)列的性質(zhì),涉及正弦定理和三角函數(shù)公式,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -28 | B. | -8 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,ln2) | B. | (2,-ln2) | C. | (-ln2,2) | D. | (ln2,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3} | B. | {-2} | C. | {3,-2} | D. | {∅} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9\sqrt{2}}{2}$ | B. | $\frac{9\sqrt{2}}{4}$ | C. | $\frac{9\sqrt{2}}{6}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com