分析 由奇偶函數(shù)的定義,先求函數(shù)的定義域,再判斷f(-x)和f(x)的關(guān)系即可.
解答 解:①f(x)=xlg(x+$\sqrt{{x}^{2}+1}$)的定義域?yàn)镽,f(-x)-f(x)=-xlg(-x+$\sqrt{{x}^{2}+1}$)-xlg(x+$\sqrt{{x}^{2}+1}$)=0,
∴函數(shù)是偶函數(shù);
②f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$的定義域?yàn)閇-1,1),不關(guān)于原點(diǎn)對(duì)稱,非奇非偶;
③f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+1(x>0)}\\{{x}^{2}+2x-1(x<0)}\end{array}\right.$,設(shè)x>0,則-x<0,∴f(-x)=x2-2x-1=-f(x),
同理x<0時(shí),f(-x)=-f(x),
∴函數(shù)是奇函數(shù);
④f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$的定義域?yàn)閇-2,0)∪(0,2].f(x)=$\frac{\sqrt{4-{x}^{2}}}{x}$,
∴f(-x)=$\frac{\sqrt{4-{x}^{2}}}{-x}$=-f(x),∴函數(shù)是奇函數(shù).
點(diǎn)評(píng) 本題考查函數(shù)奇偶性的判斷,屬基礎(chǔ)知識(shí)的考查,較簡(jiǎn)單.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | {0}∪(2,+∞) | C. | {0} | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com