1.在直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知兩點(diǎn)的極坐標(biāo)為$A({2,\frac{π}{3}})$、$B({4,\frac{2π}{3}})$,則直線AB的直角坐標(biāo)方程為$x+\sqrt{3}y-4=0$.

分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$把A,B兩點(diǎn)的周建彪化為直角坐標(biāo),再利用點(diǎn)斜式即可得出.

解答 解:兩點(diǎn)的極坐標(biāo)為$A({2,\frac{π}{3}})$、$B({4,\frac{2π}{3}})$,
化為直角坐標(biāo)A$(1,\sqrt{3})$,B$(-2,2\sqrt{3})$.
斜率k=$\frac{2\sqrt{3}-\sqrt{3}}{-2-1}$=-$\frac{\sqrt{3}}{3}$.
∴直線AB的直角坐標(biāo)方程為y-$\sqrt{3}$=-$\frac{\sqrt{3}}{3}(x-1)$,
化為$x+\sqrt{3}y-4=0$,
故答案為:$x+\sqrt{3}y-4=0$.

點(diǎn)評(píng) 本題考查了把極坐標(biāo)化為直角坐標(biāo)、直線的點(diǎn)斜式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若(1+ax)7(a≠0)的展開式中x5與x6的系數(shù)相等,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,圓C的極坐標(biāo)方程為$ρ=4\sqrt{2}cos(θ+\frac{π}{4})$
(Ⅰ)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線l與圓C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(2,0),試求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=$\frac{2x-m}{{{x^2}+1}}$定義在實(shí)數(shù)集R上的函數(shù),把方程f(x)=$\frac{1}{x}$稱為函數(shù)f(x)的特征方程,特征方程的兩個(gè)實(shí)根α,β(α<β)稱為f(x)的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)求αf(β)+βf(α)的值;
(3)判斷函數(shù)y=f(x),x∈[α,β]的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等比數(shù)列{an}中,若a1+a2=20,a3+a4=40,則S6=( 。
A.140B.120C.210D.520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=log${\;}_{\frac{1}{3}}$$\frac{1}{4}$,b=log${\;}_{\frac{1}{2}}$$\frac{4}{3}$,c=($\frac{1}{2}$)0.3,則( 。
A.a>c>bB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在復(fù)平面內(nèi),與復(fù)數(shù)$\frac{1}{1+i}$(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={-1,0,1},B={x|x2-x<2},則集合A∩B=( 。
A.{-1,0,1}B.{0,1}C.{-1,0}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知命題甲:sina-cosa=$\sqrt{2}$,命題乙:雙曲線$\frac{{x}^{2}}{co{s}^{2}a}$-$\frac{{y}^{2}}{si{n}^{2}a}$=1的漸近線與圓(x-1)2+y2=$\frac{1}{2}$相切,則命題甲為命題乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案