12.不等式組$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x+3y-4≤0}\end{array}\right.$,表示在平面區(qū)域繞著原點(diǎn)旋轉(zhuǎn)一周所得平面圖形的面積為$\frac{16π}{5}$.

分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)圖形繞著原點(diǎn)旋轉(zhuǎn)一周,得到一個(gè)圓環(huán),求出圓的半徑即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:△ABC及其內(nèi)部,
將平面區(qū)域繞著原點(diǎn)旋轉(zhuǎn)一周所得平面圖形為圓環(huán),即大圓面積減去小圓面積,
∵C(2,0),∴大圓的半徑R=2,
原點(diǎn)到直線x+2y-2=0的距離d=$\frac{|-2|}{\sqrt{1+{2}^{2}}}$=$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
即小圓的半徑r=$\frac{2\sqrt{5}}{5}$,
則圓環(huán)的面積S=π×22-π×($\frac{2\sqrt{5}}{5}$)2=4π-$\frac{4π}{5}$=$\frac{16π}{5}$,
故答案為:$\frac{16π}{5}$.

點(diǎn)評 本題主要考查圓環(huán)的面積的計(jì)算,根據(jù)二元一次不等式組表示平面區(qū)域,作出對應(yīng)的平面圖象是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線$\sqrt{3}$x+3y-k=0與圓C:(x-2)2+(y-3)2=4相交于A、B兩,當(dāng)扇形ABC的面積大于等于$\frac{2π}{3}$時(shí),k的取值區(qū)間長度為( 。
A.4$\sqrt{3}$B.6C.2$\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)m∈R,其中實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}\right.$.若|x+2y|≤18,則實(shí)數(shù)m的最小值-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=Asin(x+θ)-cos$\frac{x}{2}$cos($\frac{π}{6}$-$\frac{x}{2}$)(其中A為常數(shù),θ∈(-π,0),若實(shí)數(shù)x1,x2,x3滿足;①x1<x2<x3,②x3-x1<2π,③f(x1)=f(x2)=f(x3),則θ的值為-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( 。
A.y=x+1B.y=-x3C.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.存在實(shí)數(shù)φ,使得圓面x2+y2≤4恰好覆蓋函數(shù)y=sin($\frac{π}{k}$x+φ)圖象的最高點(diǎn)或最低點(diǎn)共三個(gè),則正數(shù)k的取值范圍是($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市一高中經(jīng)過層層上報(bào),被國家教育部認(rèn)定為2015年全國青少年足球特色學(xué)校.該校成立了特色足球隊(duì),隊(duì)員來自高中三個(gè)年級,人數(shù)為50人.視力對踢足球有一定的影響,因而對這50人的視力作一調(diào)查.測量這50人的視力(非矯正視力)后發(fā)現(xiàn)他們的視力全部介于4.75和5.35之間,將測量結(jié)果按如下方式分成6組:第一組[4.75,4.85),第二組[4.85,4.95),…,第6組[5.25,5.35],如圖是按上述分組方法得到的頻率分布直方圖.又知:該校所在的省中,全省喜愛足球的高中生視力統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名喜愛足球的高中生的視力服從正態(tài)分布N(5.01,0.0064).
(1)試評估該校特色足球隊(duì)人員在全省喜愛足球的高中生中的平均視力狀況;
(2)求這50名隊(duì)員視力在5.15以上(含5.15)的人數(shù);
(3)在這50名隊(duì)員視力在5.15以上(含5.15)的人中任意抽取2人,該2人中視力排名(從高到低)在全省喜愛足球的高中生中前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b為兩個(gè)不相等的非零實(shí)數(shù),則方程ax-y+b=0與bx2+ay2=ab所表示的曲線可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題:“對任意的x∈R,x2+x+1>0”的否定是( 。
A.不存在x∈R,x2+x+1>0B.存在x0∈R,x02+x0+1>0
C.存在x0∈R,x02+x0+1≤0D.對任意的x∈R,x2+x+1≤0

查看答案和解析>>

同步練習(xí)冊答案