12.函數(shù)f(x)的定義域和值域均為(0,+∞),且滿足f(5x)=5f(x),f(x)=2-|x-3|,1≤x≤5
則f(665)=40.

分析 由已知得f(x)=5f($\frac{x}{5}$),f(665)=54f(1.064),由此能求出結(jié)果.

解答 解:∵f(5x)=5f(x),f(x)=2-|x-3|,1≤x≤5,
∴f(x)=5f($\frac{x}{5}$),
∴f(665)=54f(1.064)=54(2-3+1.064)=40.
故答案為:40.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知冪函數(shù)$f(x)={x^{{m^2}-2m-3}}(m∈Z)$的圖象關(guān)于y軸對稱,并且f(x)在第一象限是單調(diào)遞減函數(shù).
(1)求m的值;
(2)解不等式f(1-2x)≥f(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算:${(-2)^{-3}}+{(\frac{1}{4})^0}-{9^{-\frac{1}{2}}}$=$\frac{13}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)是定義域?yàn)镽的單調(diào)增函數(shù),且f(x)是奇函數(shù),當(dāng)x>0時,f(x)=log2(1+x)
(1)求f(x)的解析式;
(2)解關(guān)于t的不等式f(t2-2t)+f(2t2-5)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線x-y+2=0和圓C:x2+y2-8x+12=0,過直線上的一點(diǎn)P(x0,y0)作兩條直線PA,PB與圓C相切于A,B兩點(diǎn).①當(dāng)P點(diǎn)坐標(biāo)為(2,4)時,求以PC為直徑的圓的方程,并求直線AB的方程;
②設(shè)切線PA與PB的斜率分別為k1,k2,且k1•k2=-7時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=-x2+ex-1(x≤1)與g(x)=ln(-x+a)的圖象上存關(guān)于直線y=x-1對稱的點(diǎn),則a的取值范圍是( 。
A.(-∞,-2]B.[2,+∞)C.(-∞,2]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)={log_a}\frac{1-x}{1+x}$(a>0且a≠1)
(1)若$f(-\frac{1}{3})=1$,集合A={x|f(x)=-2},B={1},寫出集合A∪B的所有子集;
(2)若$f(-\frac{11}{13})=m$,$f(-\frac{7}{11})=n$,試用m,n來表示$f(-\frac{5}{7})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|lgx|.
(1)畫出函數(shù)y=f(x)的圖象;
(2)若存在互不相等的實(shí)數(shù)a,b使f(a)=f(b),求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知甲、兩組數(shù)據(jù)如莖葉圖所示,若兩組數(shù)據(jù)的中位數(shù)相同,平均數(shù)也相同,那么m+n=11.

查看答案和解析>>

同步練習(xí)冊答案