20.已知函數(shù)f(x)=|lgx|.
(1)畫(huà)出函數(shù)y=f(x)的圖象;
(2)若存在互不相等的實(shí)數(shù)a,b使f(a)=f(b),求ab的值.

分析 (1)先將函數(shù)表示為分段的形式f(x)=$\left\{\begin{array}{l}{-lgx,x∈(0,1)}\\{lgx,x∈[1,+∞)}\end{array}\right.$,再畫(huà)函數(shù)圖象;
(2)結(jié)合函數(shù)圖象,不妨設(shè)0<a<1<b,得到-lga=lgb,解得ab=1.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{-lgx,x∈(0,1)}\\{lgx,x∈[1,+∞)}\end{array}\right.$,如右圖,
函數(shù)在(0,1)上遞減,在(1,+∞)上遞增,
因此,函數(shù)在x=1時(shí)取得最小值0;
(2)由圖可知,要使f(a)=f(b)且a≠b,
則a,b一個(gè)比1小,一個(gè)比1大,
不妨設(shè)0<a<1<b,
則f(a)=-lga,f(b)=lgb,
所以,-lga=lgb,
即lgab=0,所以,ab=1,
故ab的值為1.

點(diǎn)評(píng) 本題主要考查了對(duì)數(shù)函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,涉及分段函數(shù)的表示,以及對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=xlnx.
(I)記函數(shù)g(x)=$\frac{a{x}^{2}}{2}$,若?x0∈[1,e]使f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)記函數(shù)h(x)=(k-3)x-k+2,若x>1時(shí)f(x)>h(x)恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)的定義域和值域均為(0,+∞),且滿足f(5x)=5f(x),f(x)=2-|x-3|,1≤x≤5
則f(665)=40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.2014年7月16日,中國(guó)互聯(lián)網(wǎng)絡(luò)信息中心發(fā)布《第三十四次中國(guó)互聯(lián)網(wǎng)發(fā)展?fàn)顩r報(bào)告》,報(bào)告顯示:我國(guó)網(wǎng)絡(luò)購(gòu)物用戶已達(dá)3.32億.為了了解網(wǎng)購(gòu)者一次性購(gòu)物金額情況,某統(tǒng)計(jì)部門(mén)隨機(jī)抽查了6月1日這一天100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表.已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購(gòu)金額
(單位:元)
頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合計(jì)1001.00
(Ⅰ)確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖;
(Ⅱ)為進(jìn)一步了解網(wǎng)購(gòu)金額的多少是否與網(wǎng)齡有關(guān),對(duì)這100名網(wǎng)購(gòu)者調(diào)查顯示:購(gòu)物金額在2000元以上的網(wǎng)購(gòu)者中網(wǎng)齡3年以上的有35人,購(gòu)物金額在2000元以下(含2000元)的網(wǎng)購(gòu)者中網(wǎng)齡不足3年的有20人.
①請(qǐng)將列聯(lián)表補(bǔ)充完整;
網(wǎng)齡3年以上網(wǎng)齡不足3年合計(jì)
購(gòu)物金額在2000元以上35
購(gòu)物金額在2000元以下20
合計(jì)100
②并據(jù)此列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在三年以上有關(guān)?
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在△ABC中,AB=c,BC=a,CA=b.其中a=14,BC邊上的高為12,內(nèi)切圓半徑r=4.求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知二次函數(shù)f(x)=ax2+bx+3是偶函數(shù),且過(guò)點(diǎn)(2,7),g(x)=x+4且F(x)=f(2x)+g(2x+1
(1)求F(x)的值域;
(2)是否對(duì)任意x∈R,都有$\frac{mx+m+4}{f(x)}<1$成立?若成立,求出m的范圍;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$ax2+2x-ln(x+1).
(1)當(dāng)a=1時(shí),求函數(shù)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,+∞)時(shí),若函數(shù)y=f(x)的圖象都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$\frac{\sqrt{3}}{6}$πB.$\frac{\sqrt{3}}{2}π$C.$\frac{2\sqrt{3}}{3}π$D.$\frac{4\sqrt{3}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)劃在空地上用36m長(zhǎng)的籬笆圍成一塊矩形空地種花,怎樣選擇矩形的長(zhǎng)和寬,才能使得所圍成的矩形面積最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案