18.若公比不為1的等比數(shù)列{an}滿足log2(a1•a2…a13)=13,等差數(shù)列{bn}滿足b7=a7,則b1+b2…+b13的值為26.

分析 由題意和對數(shù)的運算可得a7,再由等差數(shù)列的性質(zhì)可得答案.

解答 解:∵公比不為1的等比數(shù)列{an}滿足log2(a1•a2…a13)=13,
∴l(xiāng)og2(a1•a2…a13)=log2(a713=13•log2a7=13,
解得a7=2,∴b7=a7=2,
由等差數(shù)列的性質(zhì)可得b1+b2…+b13=13b7=26
故答案為:26

點評 本題考查等比數(shù)列的通項公式,涉及對數(shù)的運算,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x}-a.x≥\frac{1}{2}}\\{x+2-a,x<\frac{1}{2}}\end{array}\right.$的三個零點為x1,x2,x3,則x1x2x3的取值范圍是( 。
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)Sn是等比數(shù)列{an}的前n項的和,Sm-1=45,Sm=93,則Sm+1=189,則m=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計算:16${\;}^{\frac{3}{4}}$+($\sqrt{2}$-1)0-lg100+sinπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知動點P(x,y)與定點F(1,0)滿足條件:以PF為直徑的圓恒與縱軸相切.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)設(shè)A,B是軌跡C上的兩點,已知點M(-1,m)滿足MA⊥MB,求△MAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)y=arctan$\sqrt{\frac{x}{1-x}}$求:該曲線在x=$\frac{1}{2}$處的切線方程和法線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.一元二次函數(shù)圖象經(jīng)過點(-1,6),(1,2)(3,6),求此函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$\underset{lim}{x→4}$$\frac{{x}^{3}+x}{{x}^{4}+3{x}^{2}+1}$=$\frac{68}{305}$;$\underset{lim}{x→0}$$\frac{3-\sqrt{9-{x}^{2}}}{{x}^{2}}$=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線過點P(1,2),且與以A(-2,-3)、B(3,0)為端點的線段相交,求直線的斜率的取值范圍是(-∞,-1]∪[$\frac{5}{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案