分析 (1)由題意列關(guān)于a,b,c的方程組,求解方程組得到a,b的值,則橢圓方程可求;
(2)聯(lián)立直線方程和橢圓方程,化為關(guān)于y的一元二次方程,利用根與系數(shù)的關(guān)系求出P,Q兩點縱坐標(biāo)的和與積,代入弦長公式求得|PQ|,再由點到直線的距離公式求出焦點F2到直線PQ的距離,代入三角形面積公式,換元后利用基本不等式求得最值.
解答 解:(1)根據(jù)題意,$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{2a=2\sqrt{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得:a2=2,b2=1,
∴橢圓方程為$\frac{x^2}{2}+\frac{y^2}{1}=1$;
(2)聯(lián)立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ x=my-3\end{array}\right.$,得(m2+2)y2-6my+7=0.
記P(x1,y1),Q(x2,y2),
則${y}_{1}+{y}_{2}=\frac{6m}{{m}^{2}+2},{y}_{1}{y}_{2}=\frac{7}{{m}^{2}+2}$,
由△=36m2-28(m2+2)>0,解得$m<-\sqrt{7}$或m$>\sqrt{7}$.
則$|PQ|=\sqrt{1+{m^2}}•\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=\sqrt{1+{m^2}}•\frac{{\sqrt{8{m^2}-56}}}{{{m^2}+2}}$,
又焦點F2到直線PQ的距離$d=\frac{4}{{\sqrt{{m^2}+1}}}$,
∴${S_{△PQ{F_2}}}=\frac{1}{2}|{PQ}|•d=\frac{{4\sqrt{2{m^2}-14}}}{{{m^2}+2}}$.
令m2-7=t2,m2>7,t>0,
則${S_{△PQ{F_2}}}=\frac{{4\sqrt{2}t}}{{{t^2}+9}}=\frac{{4\sqrt{2}}}{{t+\frac{9}{t}}}≤\frac{{4\sqrt{2}}}{{2\sqrt{t•\frac{9}{t}}}}=\frac{{2\sqrt{2}}}{3}$,
當(dāng)且僅當(dāng)t=3,即m2=16,m=±4取得最大值${S_{△PQ{F_2}}}=\frac{{2\sqrt{2}}}{3}$.
點評 本題考查橢圓方程的求法,考查了直線與圓錐曲線位置關(guān)系的應(yīng)用,訓(xùn)練了利用基本不等式求函數(shù)最值,考查計算能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{5}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓的離心率大于1 | |
B. | 雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=-1$的焦點在x軸上 | |
C. | $?x∈R,sinx+cosx=\frac{7}{5}$ | |
D. | 不等式$\frac{1}{x}>1$的解集為(-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $s≤\frac{3}{2}$ | B. | $s≤\frac{7}{4}$ | C. | $s≤\frac{23}{12}$ | D. | $s≤\frac{49}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q是真命題 | B. | p∨q是假命題 | C. | ¬p是真命題 | D. | ¬q是真命題 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com