10.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,F(xiàn),G分別是CC1,BC兩邊的中點(diǎn),畫出平面D1FG與平面ABCD的交線.

分析 連結(jié)AD1、AG,則AG是平面D1FG與平面ABCD的交線.

解答 解:連結(jié)AD1、AG,則AG是平面D1FG與平面ABCD的交線.
證明如下:
∵在長(zhǎng)方體ABCD-A1B1C1D1中,F(xiàn),G分別是CC1,BC兩邊的中點(diǎn),
∴FG∥BC1
又BC1∥AD1,∴FG∥AD1,
∴A、G、F、D1四點(diǎn)共面于平面D1FG,
∵AG?平面ABCD,
∴AG是平面D1FG與平面ABCD的交線.

點(diǎn)評(píng) 本題考查面面交線的畫法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對(duì)邊分別a,b,c,且3csinA=bsinC 
(1)求$\frac{a}$的值;
(2)若△ABC的面積為3$\sqrt{3}$,且C=60°,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.兩平行線3x-4y-2=0與3x-4y+8=0之間的距離為( 。
A.2B.$\frac{6}{5}$C.1D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示.則該幾何體的體積等于( 。
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=$\frac{1}{{x}^{4}}$,則y′=-$\frac{4}{{x}^{5}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=-asinx+b,(a,b∈R).
(1)若a>0,當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{6}$]時(shí),函數(shù)f(x)的最大值為0,最小值為-4,求a,b的值;
(2)當(dāng)b=1,函數(shù)g(x)=f(x)+cos2x,x∈[$\frac{π}{6}$,$\frac{7π}{6}$]的最大值為3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知sin2A一sin2B=sinC(sinC一sinB).
(1)求角A的值.
(2)若b+c=1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若$\overrightarrow{a}$-2$\overrightarrow$與非零向量m$\overrightarrow{a}$+n$\overrightarrow$共線,則$\frac{m}{n}$等于( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a,b,c是△ABC的三邊,若直線ax+by+c=0與圓x2+y2=1無公共點(diǎn),則△ABC的形狀是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案