6.(1)函數(shù)f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是冪函數(shù),且在(0,+∞)上是減函數(shù),求m的值;
(2)已知函數(shù)y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)的圖象與兩坐標(biāo)軸均無交點(diǎn),且其圖象關(guān)于y軸對(duì)稱.
①求出n的值;
②畫出函數(shù)圖象的示意圖.

分析 (1)由題意可得:$\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{{m}^{2}-2m-3<0}\end{array}\right.$,解得m即可.
(2)①由題意可知:n2-2n-3<0,且n2-2n-3為偶數(shù).解出即可.
②由①可得:y=x-4.如圖所示.

解答 解:(1)∵函數(shù)f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是冪函數(shù),且在(0,+∞)上是減函數(shù),
∴$\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{{m}^{2}-2m-3<0}\end{array}\right.$,解得m=2或m=-1(舍).
∴m=2.
(2)①由題意可知:n2-2n-3<0,且n2-2n-3為偶數(shù).
解得n=1.
②由①可得:y=x-4
如圖所示:

點(diǎn)評(píng) 本題考查了冪函數(shù)的定義解析式圖象及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若方程2x2-ax-1=0在(0,1)內(nèi)恰有一解,則實(shí)數(shù)a的取值范圍是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.(1+tan17°)(1+tan18°)(1+tan27°)(1+tan28°)的值是( 。
A.2B.4C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=x2+3x+1,則f(x+1)=( 。
A.x2+3x+2B.x2+3x+5C.x2+5x+5D.x2+5x+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ln(2x-a)的定義域是(1,+∞),則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=x3+x2+2,求f(x)和g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$+log2(1+$\sqrt{2}$+$\sqrt{3}$)+log2(1+$\sqrt{2}$-$\sqrt{3}$)-log23log34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在數(shù)列{an}中,an+1=3an2,a1=3,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若定義在R上的函數(shù)f(x)滿足f(0)=-1,其導(dǎo)函數(shù)f′(x)滿足f′(x)>k>1,則f($\frac{1}{k-1}$)與$\frac{1}{k-1}$大小關(guān)系一定是(  )
A.f($\frac{1}{k-1}$)≥$\frac{1}{k-1}$B.f($\frac{1}{k-1}$)≤$\frac{1}{k-1}$C.f($\frac{1}{k-1}$)>$\frac{1}{k-1}$D.f($\frac{1}{k-1}$)<$\frac{1}{k-1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案