A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 以O為原點,OA為x軸,OB為y軸,OV為z軸,建立空間直角坐標系,由此能求出異面直線EO與BC所成的角的大小.
解答 解:以O為原點,OA為x軸,OB為y軸,OV為z軸,建立空間直角坐標系,
設正四棱錐V-ABCD的側棱長與底面邊長都為2,
則O(0,0,0),A($\sqrt{2}$,0,0),V(0,0,$\sqrt{2}$),E($\frac{\sqrt{2}}{2}$,0,$\frac{\sqrt{2}}{2}$),
B(0,$\sqrt{2}$,0),C(-$\sqrt{2}$,0,0),
∴$\overrightarrow{OE}$=($\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}$=(-$\sqrt{2}$,-$\sqrt{2}$,0),
設異面直線EO與BC所成的角為θ,
則cosθ=|cos<$\overrightarrow{EO},\overrightarrow{BC}$>|=|$\frac{\overrightarrow{EO}•\overrightarrow{BC}}{|\overrightarrow{EO}|•|\overrightarrow{BC}|}$|=|$\frac{-1}{\sqrt{\frac{1}{2}+\frac{1}{2}}•\sqrt{2+2}}$|=$\frac{1}{2}$,
∴θ=60°,
∴異面直線EO與BC所成的角是60°.
故選:C.
點評 本題考查異面直線所成角的大小的求法,是基礎題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{5\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{64}{3}$ | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com