8.已知Pn(xn,yn)(n=1,2,3,…)是雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1右支上的一點,F(xiàn)1、F2為雙曲線的左右焦點,且滿足P1F2⊥F1F2,|Pn+1F2|=|PnF1|,則|P25F2|的值為$\frac{71}{2}$.

分析 由題意,知|PnF1|=d×e=$\frac{3}{2}$|xn+$\frac{4}{3}$|,|Pn+1F2|=$\frac{3}{2}$|xn+1-$\frac{4}{3}$|,利用P1F2⊥F1F2,|Pn+1F2|=|PnF1|,求出x25.即可得出結(jié)論.

解答 解:依題意,雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,
∴a=2,b=$\sqrt{5}$,c=3,
它的離心率:e=$\frac{3}{2}$,準線方程為:x=±$\frac{4}{3}$.焦點坐標(±3,0).
設(shè)點Pn到左準線的距離為d,
根據(jù)雙曲線的第二定義得:|PnF1|=d×e=$\frac{3}{2}$|xn+$\frac{4}{3}$|,
同理:|Pn+1F2|=$\frac{3}{2}$|xn+1-$\frac{4}{3}$|,
因為|Pn+1F2|=|PnF1|,
所以xn+1=xn+$\frac{8}{3}$,數(shù)列{xn}構(gòu)成一個等差數(shù)列,
又P1F2⊥F1F2,
∴x1=c=3,
∴xn=3+$\frac{8}{3}$(n-1),
∴x25=67,
∴|P25F2|=$\frac{71}{2}$.
故答案為:$\frac{71}{2}$.

點評 本題主要考查了雙曲線的簡單性質(zhì)、等差數(shù)列的判斷,屬于圓錐曲線與數(shù)列的綜合題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸正半軸上,那么以線段F1P為直徑的圓的標準方程為x2+(y-$\frac{3}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC的三個角A,B,C所對的邊分別為a,b,c,且a2+b2-ab=c2,則C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)命題p:方程$\frac{x^2}{3-k}+\frac{y^2}{k-1}$=1表示雙曲線;命題q:方程y2=(k2-2k)x表示焦點在x軸的正半軸上的拋物線.
(1)若命題p為真,求實數(shù)k的取值范圍;
(2)若命題(?p)∧q是真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.拋物線x2=-$\frac{1}{2}$y的準線方程是( 。
A.x=$\frac{1}{2}$B.x=$\frac{1}{8}$C.y=$\frac{1}{2}$D.y=$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知:p:y=-(21+8m-m2x為減函數(shù),q:x2-2x+1-m2≤0(m>0),若?p是?q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大。
(2)設(shè)f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期為π,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.函數(shù)f(x)=$\sqrt{|x+1|+|x+2|-5}$.
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|-1<x<2},當實數(shù)a、b∈(B∩∁RA)時,證明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+2,-2≤x≤-1\\{x}^{2},-1<x<2\\ 5-0.5x,2≤x≤3\end{array}\right.$,求該函數(shù)的值域.

查看答案和解析>>

同步練習冊答案