分析 由函數(shù)的解析式利用對數(shù)函數(shù)的性質(zhì)可得可得x2-9>0,由此求得函數(shù)的定義域;令t=x2-9,則f(x)=log${\;}_{\frac{1}{3}}$t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)得出結(jié)論.
解答 解:由函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(x2-9),可得x2-9>0,求得x<-3或x>3,
故函數(shù)f(x)的定義域為(-∞,-3)或(3,+∞).
令t=x2-9,則f(x)=log${\;}_{\frac{1}{3}}$t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間;
再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的減區(qū)間為(-∞,-3),
故答案為:(-∞,-3)∪(3,+∞); (-∞,-3).
點評 本題主要考查復合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{{a}^{2}-{x}^{2}}}{a}$ | B. | $\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$ | C. | x(a2-x2)${\;}^{-\frac{3}{2}}$ | D. | -$\frac{1}{2}$(a2-x2)${\;}^{\frac{3}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2+i | B. | -2-i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com