20.已知定義在R上的奇函數(shù)f(x)滿足f(x+4)=f(x)恒成立,且f(1)=1,則f(2016)+f(2017)+f(2018)的值為( 。
A.0B.1C.2D.3

分析 根據(jù)函數(shù)奇偶性和周期性進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵f(x+4)=f(x),
∴函數(shù)f(x)是周期為4的周期函數(shù),
則f(2016)=f(504×4)=f(0),
f(2017)=f(504×4+1)=f(1)=1,
f(2018)=f(504×4+2)=f(2),
∵f(x)是奇函數(shù),
∴f(0)=0,
當(dāng)x=-2時(shí),f(-2+4)=f(-2),
即f(2)=-f(2),則f(2)=0,
即f(2016)+f(2017)+f(2018)=f(0)+f(1)+f(2)=0+1+0=1,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性和周期性的性質(zhì)結(jié)合條件關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知雙曲線的一個(gè)焦點(diǎn)與拋物線x2=24y的焦點(diǎn)重合,一條漸近線的傾斜角為30°,則該雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題P:?x∈R,3x2+1>0,則¬p為( 。
A.?x∈R,3x2+1≤0B.?x∈R,3x2+1≤0C.?x∈R,3x2+1<0D.?x∈R,3x2+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知曲線${C_1}:y={x^2}$與${C_2}:{y^2}=x$在第一象限內(nèi)的交點(diǎn)為P.
(1)求過(guò)點(diǎn)P且與曲線C1相切的直線方程l;
(2)求l與曲線C2所圍圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={x|2x≤4},B={x|log2x>0},則A∩B=( 。
A.[1,2]B.(1,2]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知定義在R的函數(shù)$f(x)={a^x}+\frac{1}{a^x}({a>1})$.
(1)判斷f(x)的奇偶性和單調(diào)性,并說(shuō)明理由;
(2)解關(guān)于x的不等式:f(x-1)>f(2x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知α>0且a≠1,函數(shù)f(x)=$\left\{\begin{array}{l}{(a-1)x+3a-4,(x≤0)}\\{{a}^{x},(x>0)}\end{array}\right.$滿足對(duì)任意實(shí)數(shù)x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,則a的取值范圍是( 。
A.$(1,\frac{5}{3}]$B.(0,1)C.(1,+∞)D.$[\frac{5}{3},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=loga(ax-2)在[1,3]上單調(diào)遞增,則a的取值范圍是(  )
A.(1,+∞)B.(0,2)C.(0,$\frac{2}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=6,S4=30,n∈N*,數(shù)列{bn}滿足bn•bn+1=an,b1=1
(I)求an,bn;
(Ⅱ)求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案