8.已知函數(shù)f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1,x∈R.
(1)求f(x)的最小正周期;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再向下平移m(m>0)個(gè)單位后得到函數(shù)g(x)的圖象,且函數(shù)g(x)的最大值為$\sqrt{2}$.
①求函數(shù)g(x)的解析式;
②函數(shù)y=g(x)在區(qū)間[a,b](a,b∈R且a<b)上至少含有30個(gè)零點(diǎn),在滿足條件的上述條件[a,b]中,求b-a的最小值.

分析 (1)對(duì)f(x)化簡(jiǎn),代入周期公式得出.
(2)①根據(jù)函數(shù)圖象變換規(guī)律得出g(x),利用最大值列方程解出m,
②令g(x)=0,即可解出零點(diǎn)的坐標(biāo),可得相鄰兩個(gè)零點(diǎn)之間的距離.若b-a最小,則a和b都是零點(diǎn),且中間有14個(gè)大間隔距離,15個(gè)小間隔距離.

解答 解:(1)f(x)=-sin2x-cos2x+3sin2x-cos2x=2sin2x-2cos2x=2$\sqrt{2}$sin(2x-$\frac{π}{4}$).
∴f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)①g(x)=2$\sqrt{2}$sin[2(x+$\frac{π}{4}$)-$\frac{π}{4}$]-m=2$\sqrt{2}$sin(2x+$\frac{π}{4}$)-m.∴2$\sqrt{2}$-m=$\sqrt{2}$,解得m=$\sqrt{2}$.∴g(x)=2$\sqrt{2}$sin(2x+$\frac{π}{4}$)-$\sqrt{2}$.
②令g(x)=0,得sin(2x+$\frac{π}{4}$)=$\frac{1}{2}$,∴2x+$\frac{π}{4}$=$\frac{π}{6}$+2kπ,或2x+$\frac{π}{4}$=$\frac{5π}{6}$+2kπ,解得x=-$\frac{π}{24}$+kπ,或x=$\frac{7π}{24}$+kπ.k∈Z.
∴相鄰兩個(gè)零點(diǎn)之間的距離為$\frac{π}{3}$或$\frac{2π}{3}$.
當(dāng)b-a最小時(shí),a,b均是g(x)的零點(diǎn),且在[a,b]上恰好有29個(gè)相鄰零點(diǎn)間隔,其中有14個(gè)大間隔,15個(gè)小間隔.
∴b-a=$\frac{π}{3}×15$+$\frac{2π}{3}$×14=$\frac{43π}{3}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,三角函數(shù)的性質(zhì),三角函數(shù)求值,屬于中檔題,計(jì)算出零點(diǎn)間得距離是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知$\overrightarrow{OA}$=(sin$\frac{x}{3}$,$\sqrt{3}$cos$\frac{x}{3}$),$\overrightarrow{OB}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$)(x∈R),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$.
(1)求函數(shù)f(x)的解析式,并求圖象的對(duì)稱(chēng)中心的橫坐標(biāo);
(2)若x∈(0,π],方程f(x)=a有兩個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(m,-1)$,若$\overrightarrow a⊥\overrightarrow b$,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{y-4≤0}\end{array}\right.$,則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=x-1與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.符合以下性質(zhì)的函數(shù)稱(chēng)為“S函數(shù)”:①定義域?yàn)镽,②f(x)是奇函數(shù),③f(x)<a(常數(shù)a>0),④f(x)在(0,+∞)上單調(diào)遞增,⑤對(duì)任意一個(gè)小于a的正數(shù)d,至少存在一個(gè)自變量x0,使f(x0)>d.下列四個(gè)函數(shù)中${f_1}(x)=\frac{2a}{π}arctanx$,${f_2}(x)=\frac{ax|x|}{{{x^2}+1}}$,${f_3}(x)=\left\{{\begin{array}{l}{a-\frac{1}{x}}&{x>0}\\ 0&{x=0}\\{-a-\frac{1}{x}}&{x<0}\end{array}}\right.$,${f_4}(x)=a•({\frac{{{2^x}-1}}{{{2^x}+1}}})$中“S函數(shù)”的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知拋物線x2=8y的弦AB的中點(diǎn)的縱坐標(biāo)為4,則|AB|的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sinωx($\sqrt{3}$cosωx+sinωx)(ω>0)的圖象兩相鄰對(duì)稱(chēng)軸間的距離為$\frac{π}{2}$.
(1)求ω的值;
(2)求函數(shù)f(x)的單凋減區(qū)間;
(3)若對(duì)任意的x1,x2∈[0,$\frac{π}{2}$],都有,|f(x1)-f(x2)|<m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.cos660°=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案