5.已知集合A={x|x2-2x-15≤0},B={x|m-2<x<2m-3},且B⊆A,求實(shí)數(shù)m的取值范圍.

分析 由題意,可先化簡集合A,利用B⊆A,可對B按兩類,B是空集與B不是空集求解實(shí)數(shù)m的取值范圍.

解答 解:∵集合A={x|x2-2x-15≤0}=[-3,5],B={x|m-2<x<2m-3},B⊆A,
∴當(dāng)B=∅時(shí),m-2≥2m-3,解得m≤1,
當(dāng)B≠∅時(shí),則$\left\{\begin{array}{l}{m-2≥-3}\\{2m-3≤5}\\{m-2<2m-3}\end{array}\right.$,解得1<m≤4,
綜上所述,實(shí)數(shù)m的取值范圍為(-∞,4].

點(diǎn)評 本題考點(diǎn)集合關(guān)系中的參數(shù)取值問題,考查了一元二次不等式的解法,集合包含關(guān)系的判斷,解題的本題,關(guān)鍵是理解B⊆A,由此得出應(yīng)分兩類求參數(shù),忘記分類是本題容易出錯(cuò)的一個(gè)原因,在做包含關(guān)系的題時(shí),一定要注意空集的情況,莫忘記討論空集導(dǎo)致錯(cuò)誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知tanx=2,求2sin2x-3sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xex-ex+1.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)證明:不等式f(x)+x<0對于任意的x∈(-1,0),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}首項(xiàng)是a1=1,且滿足遞推關(guān)系${a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$.
(1)證明:數(shù)列$\left\{{\frac{a_n}{2^n}}\right\}$是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求等差數(shù)列$\left\{{b_n}\right\}(n∈{N^*})$使得對一切自然數(shù)n∈N*都有如下的等式成立:${b_1}C_n^0+{b_2}C_n^1+{b_3}C_n^2+…+{b_{n+1}}C_n^n={a_{n+1}}$;
(3)cn=nbn,是否存在正常數(shù)M使得$\frac{c_1}{a_1}+\frac{c_2}{a_2}+…+\frac{c_n}{a_n}<M$對n∈N*恒成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}中,前n項(xiàng)和Sn=3n+1,
(1)求a1
(2)求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,根據(jù)下列條件解三角形,其中有一解的是( 。
A.b=7,c=3,C=30°B.b=5,c=4$\sqrt{2}$,B=45°C.a=6,b=6$\sqrt{3}$,B=60°D.a=20,b=30,A=30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:
(1)計(jì)算${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}+{log_2}3×{log_3}$4
(2)已知tanα=$\sqrt{3},π<α<\frac{3}{2}$π,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面單位向量,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$,若平面向量$\overrightarrow$滿足$\overrightarrow b•\overrightarrow{e_1}=2,\overrightarrow b•\overrightarrow{e_2}=\frac{5}{2}$,則$|{\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值為4,則a=2.

查看答案和解析>>

同步練習(xí)冊答案