12.設(shè)f(x)是R上的偶函數(shù),f(1)=0,且在(0,+∞)上是增函數(shù),則(x-1)f(x-1)>0的解集是(0,1)∪(2,+∞).

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系先求出f(x)>0和f(x)<0的解集,進(jìn)行求解即可.

解答 解:∵f(x)是R上的偶函數(shù),f(1)=0,且在(0,+∞)上是增函數(shù),
∴f(-1)=f(1)=0,
則函數(shù)f(x)對應(yīng)的圖象如圖:
即當(dāng)x>1或x<-1時(shí),f(x)>0,
當(dāng)0<x<1或-1<x<0時(shí),f(x)<0,
則不等式(x-1)f(x-1)>0等價(jià)為$\left\{\begin{array}{l}{x-1>0}\\{f(x-1)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-1<0}\\{f(x-1)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>1}\\{x-1>1或x-1<-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<1}\\{0<x-1<1或-1<x-1<1}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>1}\\{x>2或x<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<1}\\{1<x<2或0<x<2}\end{array}\right.$,
即x>2或0<x<1,
即不等式的解集為(0,1)∪(2,+∞),
故答案為:(0,1)∪(2,+∞)

點(diǎn)評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系,利用數(shù)形結(jié)合求出f(x)>0和f(x)<0的解集是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ex-mx+1的圖象是曲線C,若曲線C不存在與直線y=ex垂直的切線,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$)D.(-∞,$\frac{1}{e}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=$\frac{1}{2},{a_{n+1}}=\frac{n+1}{2n}{a_n}$.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=n(2-Sn),n∈N*,若bn≤λ,n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線(m+3)x+my-6=0過定點(diǎn)(2,-2),它與圓x2-4x+y2-1=0的位置關(guān)是相交.(填:相交、相切、相離或不確定)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知全集U=R,$A=\left\{{x|{x^2}-3x=0}\right\},B=\left\{{x|x>\frac{1}{4}}\right\}$,則A∩∁UB={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:
在定義域(0,+∞)內(nèi)存在x0,使函數(shù)f(x0+1)≤f(x0)f(1)成立;
(1)請給出一個(gè)x0的值,使函數(shù)$f(x)=\frac{1}{x}∈M$;
(2)函數(shù)f(x)=x2-x-2是否是集合M中的元素?若是,請求出所有x0組成的集合;若不是,請說明理由;
(3)設(shè)函數(shù)$f(x)=\frac{a}{{{x^2}+2}}∈M$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)$f(x)=\frac{x-1}{x+2}$在(-2,4)上的值域?yàn)?(-∞,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.與直線2x+3y+5=0垂直,且經(jīng)過點(diǎn)(1,1)的直線方程是3x-2y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=sin4x-cos4x是一個(gè)( 。
A.周期為π的奇函數(shù)B.周期為π的偶函數(shù)
C.周期為$\frac{π}{2}$的奇函數(shù)D.周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案