分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),求得切線的斜率,解方程可得m=0,由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(Ⅱ)由題意可得g(x1)的最大值<f′(x2)的最小值,求出g(x)的導(dǎo)數(shù),求得單調(diào)區(qū)間,可得最大值,求出f(x)的導(dǎo)數(shù),配方可得f′(x)的最小值,即可得到m的范圍.
解答 解:(Ⅰ)f'(x)=x2-2ex+m,
∵f'(1)=1-2e+m=1-2e,∴m=0,
令f'(x)≥0,解得x≥2e,或x≤0,令f'(x)<0,解得0<x<2e,
∴函數(shù)f(x)的單調(diào)增區(qū)間為[2e,+∞),(-∞,0],
單調(diào)減區(qū)間為(0,2e).
(Ⅱ)$g'(x)=\frac{1-lnx}{x^2}(x>0)$,
令$g'(x)=\frac{1-lnx}{x^2}≥0⇒0<x≤e$,
∴函數(shù)g(x)的單調(diào)增區(qū)間為(0,e],單調(diào)減區(qū)間為[e,+∞).
當(dāng)x=e時$,\;\;g{(x)_{max}}=\frac{1}{e}$,
又f'(x)=x2-2ex+m=(x-e)2+m-e2,$f'{(x)_{min}}=m-{e^2}$,
∵g(x1)<f'(x2)恒成立,
∴$\frac{1}{e}<m-{e^2}⇒$$m>{e^2}+\frac{1}{e}$.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查不等式恒成立問題的解法,注意轉(zhuǎn)化為求函數(shù)的最值問題,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{5π}{12}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 6 | C. | -6 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60+4$\sqrt{3}$+2$\sqrt{21}$ | B. | 60+2$\sqrt{3}$+2$\sqrt{21}$ | C. | 60+2$\sqrt{3}$+4$\sqrt{21}$ | D. | 60+4$\sqrt{3}$+4$\sqrt{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-1)>f $({{{log}_{0.5}}\frac{1}{4}})$>f(lg0.5) | B. | f(lg0.5)>f(-1)>f $({{{log}_{0.5}}\frac{1}{4}})$ | ||
C. | f $({{{log}_{0.5}}\frac{1}{4}})$>f(-1)>f(lg0.5) | D. | f(lg0.5)>f $({{{log}_{0.5}}\frac{1}{4}})$>f(-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com