分析 通過(guò)$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{2}$n2+$\frac{n}{2}$與$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$+$\frac{{a}_{n+1}}{{3}^{n+1}}$=$\frac{1}{2}$(n+1)2+$\frac{n+1}{2}$作差、計(jì)算可知an+1=(n+1)•3n+1,進(jìn)而可得結(jié)論.
解答 解:∵$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{2}$n2+$\frac{n}{2}$,
∴$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n}}$+$\frac{{a}_{n+1}}{{3}^{n+1}}$=$\frac{1}{2}$(n+1)2+$\frac{n+1}{2}$,
兩式相減得:$\frac{{a}_{n+1}}{{3}^{n+1}}$=$\frac{1}{2}$(n+1)2+$\frac{n+1}{2}$-($\frac{1}{2}$n2+$\frac{n}{2}$)=n+1,
∴an+1=(n+1)•3n+1,
又∵$\frac{{a}_{1}}{3}$=$\frac{1}{2}+\frac{1}{2}$=1,即a1=3滿足上式,
∴an=n•3n.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com