14.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_3}x|,0<x≤3}\\{-3x+10,x>3}\end{array}}\right.$若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范
圍是(  )
A.(3,10)B.$(3,\frac{10}{3})$C.$(1,\frac{10}{3})$D.$(\frac{1}{3},10)$

分析 作函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_3}x|,0<x≤3}\\{-3x+10,x>3}\end{array}}\right.$的圖象,設(shè)a<b<c,從而可得ab=1,3<c<$\frac{10}{3}$,從而解得.

解答 解:作函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_3}x|,0<x≤3}\\{-3x+10,x>3}\end{array}}\right.$的圖象如下,
,
不妨設(shè)a<b<c,
∵f(a)=f(b)=f(c),
∴|log3a|=|log3b|=10-3c,
∴ab=1,3<c<$\frac{10}{3}$,
∴abc的取值范圍是(3,$\frac{10}{3}$);
故選:B.

點(diǎn)評(píng) 本題考查了分段函數(shù)的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤3m-1}.
(1)當(dāng)m=3時(shí),求集合A∩B,A∪B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四面體ABCD中,O、E分別BD、BC的中點(diǎn),CA=CB=CD=BD=2AO=2,AB=AD.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求異面直線AB與CD所成角的余弦值;
(Ⅲ)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方形ADEF所在平面和等腰梯形ABCD所在的平面互相垂直,已知BC=4,AB=AD=2.
(1)求證:AC⊥BF;
(2)在線段BE上是否存在一點(diǎn)P,使得平面PAC⊥平面BCEF?若存在,求出$\frac{|BP|}{|PE|}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算
(1)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}$
(2)$\frac{2}{5}lg32+lg50+\sqrt{{{({lg3})}^2}-lg9+1}-lg\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.兩平行直線2x-y+3=0和2x-y-1=0之間的距離是$\frac{{4\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義在R上的函數(shù)f(x)滿足:f(-x)=-f(x),f(x+2)=f(x),當(dāng)且x∈[0,1]時(shí),f(x)=x,則f(2011.5)=-0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求證:$\sqrt{7}$-$\sqrt{6}$<$\sqrt{3}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.與直線4x+3y-5=0平行,并且到它距離等于3的直線方程:4x+3y+10=0或4x+3y-20=0.

查看答案和解析>>

同步練習(xí)冊答案