1.已知數(shù)列{an}滿足${4^{a_1}}×{4^{a_2}}×{4^{a_3}}×…×{4^{a_n}}={2^{n(n+1)}}$
(1)求數(shù)列{an}的通項公式
(2)設bn=1+tanan+1•tanan+2,求數(shù)列{bn}的前n項和.

分析 (1)由于數(shù)列{an}滿足${4^{a_1}}×{4^{a_2}}×{4^{a_3}}×…×{4^{a_n}}={2^{n(n+1)}}$,可得${2}^{2({a}_{1}+{a}_{2}+…+{a}_{n})}$=2n(n+1),可得Sn=$\frac{n(n+1)}{2}$,利用遞推關系即可得出an
(2)${b_n}=1+tan(n+1)tan(n+2)=\frac{1}{tan1}[{tan(n+2)-tan(n+1)}]$,利用“裂項求和”即可得出.

解答 解:(1)∵數(shù)列{an}滿足${4^{a_1}}×{4^{a_2}}×{4^{a_3}}×…×{4^{a_n}}={2^{n(n+1)}}$,
∴${2}^{2({a}_{1}+{a}_{2}+…+{a}_{n})}$=2n(n+1),
解得Sn=$\frac{n(n+1)}{2}$,
∴當n=1時,a1=1;
當n≥2時,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n.
∴an=n.
(2)${b_n}=1+tan(n+1)tan(n+2)=\frac{1}{tan1}[{tan(n+2)-tan(n+1)}]$,
∴${s}_{n}=\frac{1}{tan1}[(tan3-tan2)+(tan4-tan3)+…+(tan(n+2)-tan(n+1))]$,
∴${s_n}=\frac{1}{tan1}[{tan(n+2)-tan2}]$.

點評 本題考查了遞推關系、指數(shù)冪的運算性質、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆河南新鄉(xiāng)一中高三9月月考數(shù)學(文)試卷(解析版) 題型:選擇題

已知三個數(shù),,成等比數(shù)列,其倒數(shù)重新排列后為遞增的等比數(shù)列的前三項,則能使不等式成立的自然數(shù)的最大值為( )

A.9 B.8 C.7 D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.求值:sin120°+cos150°=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,則這個幾何體的外接球的體積為(  )  
A.$\frac{{\sqrt{2}}}{3}π$?B.$\sqrt{2}π$?C.2π?D.$\frac{{2\sqrt{2}}}{3}π$?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.過直線x+y-2$\sqrt{2}$=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)要使直線l1:(2m2+m-3)x+(m2-m)y=2m與直線l2:x-y=1平行,求m的值.
(2)直線l1:ax+(1-a)y=3與直線l2:(a-1)x+(2a+3)y=2互相垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在△ABC中,∠C=90°,AC=3,BC=4,AB邊(包括端點)上一點F,BC邊(包括端點)上一點E滿足線段EF分△ABC的面積為相等的兩部分;
(1)設BF=x,EF=y,將y表示為x的函數(shù);
(2)求線段EF長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.條件p:|x+1|>1,條件$q:\frac{1}{3-x}>1$,則¬q是¬p的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=cosxcos(x-$\frac{π}{3}$),x∈(0,$\frac{π}{3}$)的值域為[$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

同步練習冊答案