分析 (1)由于數(shù)列{an}滿足${4^{a_1}}×{4^{a_2}}×{4^{a_3}}×…×{4^{a_n}}={2^{n(n+1)}}$,可得${2}^{2({a}_{1}+{a}_{2}+…+{a}_{n})}$=2n(n+1),可得Sn=$\frac{n(n+1)}{2}$,利用遞推關系即可得出an.
(2)${b_n}=1+tan(n+1)tan(n+2)=\frac{1}{tan1}[{tan(n+2)-tan(n+1)}]$,利用“裂項求和”即可得出.
解答 解:(1)∵數(shù)列{an}滿足${4^{a_1}}×{4^{a_2}}×{4^{a_3}}×…×{4^{a_n}}={2^{n(n+1)}}$,
∴${2}^{2({a}_{1}+{a}_{2}+…+{a}_{n})}$=2n(n+1),
解得Sn=$\frac{n(n+1)}{2}$,
∴當n=1時,a1=1;
當n≥2時,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n.
∴an=n.
(2)${b_n}=1+tan(n+1)tan(n+2)=\frac{1}{tan1}[{tan(n+2)-tan(n+1)}]$,
∴${s}_{n}=\frac{1}{tan1}[(tan3-tan2)+(tan4-tan3)+…+(tan(n+2)-tan(n+1))]$,
∴${s_n}=\frac{1}{tan1}[{tan(n+2)-tan2}]$.
點評 本題考查了遞推關系、指數(shù)冪的運算性質、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源:2017屆河南新鄉(xiāng)一中高三9月月考數(shù)學(文)試卷(解析版) 題型:選擇題
已知三個數(shù),,成等比數(shù)列,其倒數(shù)重新排列后為遞增的等比數(shù)列的前三項,則能使不等式成立的自然數(shù)的最大值為( )
A.9 B.8 C.7 D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{3}π$? | B. | $\sqrt{2}π$? | C. | 2π? | D. | $\frac{{2\sqrt{2}}}{3}π$? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com