14.已知定義域?yàn)镽的奇函數(shù)滿(mǎn)足f(x+6)=f(x),且x∈(0,3)時(shí),f(x)=1-ln(x2+a),若函數(shù)y=f(x)在區(qū)間[-6,6]上有9個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為e-9<a<e.

分析 由題意,f(0)=0,x∈(0,3)時(shí),f(x)=1-ln(x2+a)有1個(gè)零點(diǎn),利用函數(shù)的單調(diào)性,即可得出結(jié)論.

解答 解:由題意,f(0)=0,x∈(0,3)時(shí),f(x)=1-ln(x2+a)有1個(gè)零點(diǎn),
∵f′(x)=-$\frac{2x}{{x}^{2}+a}$<0,
∴$\left\{\begin{array}{l}{1-lna>0}\\{1-ln(9+a)<0}\end{array}\right.$
∴e-9<a<e.
故答案為:e-9<a<e.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性、奇偶性,考查函數(shù)的零點(diǎn),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若直線x+(a-1)y+2=0和2x+3y+1=0互相垂直,則a=(  )
A.$\frac{1}{3}$B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.從空間一點(diǎn)出發(fā)的三條射線PA,PB,PC均成60°角,則二面角B-PA-C的大小為( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$arcsin\frac{1}{3}$D.$arccos\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.正三棱臺(tái)上、下底面邊長(zhǎng)分別是a和2a,棱臺(tái)的高為$\frac{\sqrt{33}}{6}$a,則正三棱臺(tái)的側(cè)面積為$\frac{9}{2}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列各組函數(shù)中,f(x)與g(x)相等的一組( 。
A.f(x)=($\sqrt{x}$)2,g(x)=xB.f(x)=$\frac{{x}^{2}}{x}$,g(x)=xC.f(x)=$\sqrt{{x}^{2}}$,g(x)=$\root{3}{{x}^{3}}$D.f(x)=$\root{6}{{x}^{3}}$,g(x)=$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列函數(shù)中:
(1)$y=|x|+\frac{1}{|x|}$(2)$y=\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$(3)$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$(4)$y=\frac{{{x^2}-2x+4}}{x}$(5)$y=sinx+\frac{1}{sinx}(0<x<\frac{π}{2})$,其中最小值為2的函數(shù)是(1)(3) (填正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.給出下列五種說(shuō)法:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=x2得到定義域相同;
(2)函數(shù)y=x2與y=3x的值域相同;
(3)函數(shù)y=$\frac{1}{2}+\frac{1}{{2}^{x}-1}$與y=$\frac{(1+{2}^{x})^{2}}{x•{2}^{x}}$均是奇函數(shù);
(4)函數(shù)y=(x-1)2與y=2x-1在(0,+∞)上都是增函數(shù);
(5)記函數(shù)f(x)=x-[x](注:[x]表示不超過(guò)x的最大整數(shù),例如[3.2]=3;[-2.3]=-3),則f(x)的值域是[0,1).
其中所有正確說(shuō)法的序號(hào)是(1)(3)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是R上的奇函數(shù),在(0,+∞)上是增函數(shù),且f(3)=0,則滿(mǎn)足f(x)>0的實(shí)數(shù)x的范圍是(  )
A.(-∞,-3)∪(0,3)B.(-3,0)∪(3,+∞)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.記函數(shù)$f(x)=lg(3-x)+\sqrt{x-1}$的定義域?yàn)榧螦,函數(shù)g(x)=2x+a的值域?yàn)榧螧.
(1)若a=2,求A∩B和A∪B;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案