16.在平面直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù)),曲線C2的方程為x2+(y-4)2=16.
(Ⅰ)求曲線C1的極坐標(biāo)方程;
(Ⅱ)若曲線θ=$\frac{π}{3}$(ρ>0)與曲線C1.C2交于A,B兩點(diǎn),求|AB|.

分析 (I)利用cos2α+sin2α=1可把曲線C1的參數(shù)方程化為普通方程:x2+(y-2)2=4,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入可得極坐標(biāo)方程.
(II)把曲線C2的方程x2+(y-4)2=16化為極坐標(biāo)方程為:ρ=8sinθ,可得曲線θ=$\frac{π}{3}$(ρ>0)與曲線C1交于A:ρ1,與曲線C2交于B點(diǎn):ρ2.利用|AB|=|ρ21|即可得出.

解答 解:(I)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù)),消去參數(shù)α化為普通方程:x2+(y-2)2=4,
把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入可得極坐標(biāo)方程:ρ=4sinθ.
(II)曲線C1的極坐標(biāo)方程為ρ=4sinθ.
把曲線C2的方程x2+(y-4)2=16化為極坐標(biāo)方程為:ρ=8sinθ,
曲線θ=$\frac{π}{3}$(ρ>0)與曲線C1交于A:ρ1=$4sin\frac{π}{3}$=2$\sqrt{3}$,
與曲線C2交于B點(diǎn):ρ2=$8sin\frac{π}{3}$=4$\sqrt{3}$.
∴|AB|=|ρ21|=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、極坐標(biāo)方程的相交問題,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若直線a上的所有點(diǎn)到兩條直線m、n的距離都相等,則稱直線a為“m、n的等距線”.在正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱中點(diǎn),M、N分別為EH、FG中點(diǎn),則在直線MN,EG,F(xiàn)H,B1D中,是“A1D1、AB的等距線”的條數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在棱長為2的正方體ABCD-A1B1C1D1中,點(diǎn)P是正方體棱上的一點(diǎn)(不包括棱的端點(diǎn)),滿足|PB|+|PD1|=$2\sqrt{5}$的點(diǎn)P的個(gè)數(shù)為12;若滿足|PB|+|PD1|=m的點(diǎn)P的個(gè)數(shù)為6,則m的取值范圍是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)經(jīng)過橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的任意兩點(diǎn)的連線(該連線不與x軸垂直)的垂直平分線與x軸交點(diǎn)的橫坐標(biāo)為x0,則x0的取值范圍是( 。
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)過點(diǎn)P(2,2)的直線與橢圓x2+2y2=16交于A,B兩點(diǎn),若P為線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是一個(gè)四棱錐的三視圖,則該幾何體的體積為( 。
A.16B.12C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)F1(-$\sqrt{13}$,0)和點(diǎn)F2($\sqrt{13}$,0)是橢圓E的兩個(gè)焦點(diǎn),且點(diǎn)A(0,6)在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上的一點(diǎn),若|PF2|=4,求以線段PF1為直徑的圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下四個(gè)命題:
①若函數(shù)y=ex-mx(x∈R)有大于零的極值點(diǎn),則實(shí)數(shù)m>1;
②若拋物線x2=4y上一點(diǎn)M到焦點(diǎn)的距離為3,則點(diǎn)M到x軸的距離為2;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知函數(shù)f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,則$\frac{a}$的值為-2或-$\frac{2}{3}$.
其中真命題的序號(hào)為①②③(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={1,2,3},則B={x-y|x∈A,y∈A}中的元素個(gè)數(shù)為( 。
A.9B.5C.3D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案