11.已知等比數(shù)列{an}滿(mǎn)足a1=$\frac{1}{4}$,a3a5=4(a4-1),則a2=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵${a_1}=\frac{1}{4}$,a3a5=4(a4-1),
∴$(\frac{1}{4})^{2}×{q}^{6}$=4$(\frac{1}{4}{q}^{3}-1)$,
化為q3=8,解得q=2
則a2=$\frac{1}{4}×2$=$\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a>0,函數(shù)f(x)=eaxsinx(x∈[0,+∞]).記xn為f(x)的從小到大的第n(n∈N*)個(gè)極值點(diǎn).證明:
(Ⅰ)數(shù)列{f(xn)}是等比數(shù)列;
(Ⅱ)若a≥$\frac{1}{\sqrt{{e}^{2}-1}}$,則對(duì)一切n∈N*,xn<|f(xn)|恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.(x2+x+y)5的展開(kāi)式中,x5y2的系數(shù)為( 。
A.10B.20C.30D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某同學(xué)將“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(wx+φ)(w>0,|φ|<$\frac{π}{2}$)在某一個(gè)時(shí)期內(nèi)的圖象時(shí),列表并填入部分?jǐn)?shù)據(jù),如下表:
wx+φ
0
$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(wx+φ)05-50
(1)請(qǐng)將上述數(shù)據(jù)補(bǔ)充完整,填寫(xiě)在答題卡上相應(yīng)位置,并直接寫(xiě)出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={x|-1<x<2},B={x|0<x<3},則A∪B=(  )
A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶(hù),根據(jù)用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分,得到A地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖和B地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻數(shù)分布表

B地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻數(shù)分布表
滿(mǎn)意度評(píng)分分組[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2814106
(1)做出B地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的頻率分布直方圖,并通過(guò)直方圖比較兩地區(qū)滿(mǎn)意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可)
(Ⅱ)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度從低到高分為三個(gè)不等級(jí):
滿(mǎn)意度評(píng)分低于70分70分到89分不低于90分
滿(mǎn)意度等級(jí)不滿(mǎn)意滿(mǎn)意非常滿(mǎn)意
估計(jì)哪個(gè)地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)為不滿(mǎn)意的概率大?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,已知△ABC,D是AB的中點(diǎn),沿直線(xiàn)CD將△ACD折成△A′CD,所成二面角A′-CD-B的平面角為α,則( 。
A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某山區(qū)外圍有兩條相互垂直的直線(xiàn)型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線(xiàn)型公路,記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線(xiàn)為C,計(jì)劃修建的公路為l,如圖所示,M,N為C的兩個(gè)端點(diǎn),測(cè)得點(diǎn)M到l1,l2的距離分別為5千米和40千米,點(diǎn)N到l1,l2的距離分別為20千米和2.5千米,以l2,l1在的直線(xiàn)分別為x,y軸,建立平面直角坐標(biāo)系xOy,假設(shè)曲線(xiàn)C符合函數(shù)y=$\frac{a}{{x}^{2}+b}$(其中a,b為常數(shù))模型.
(1)求a,b的值;
(2)設(shè)公路l與曲線(xiàn)C相切于P點(diǎn),P的橫坐標(biāo)為t.
①請(qǐng)寫(xiě)出公路l長(zhǎng)度的函數(shù)解析式f(t),并寫(xiě)出其定義域;
②當(dāng)t為何值時(shí),公路l的長(zhǎng)度最短?求出最短長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案