17.已知a,b都是實數(shù),那么“$\sqrt{a}$>$\sqrt$”是“l(fā)na>lnb”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義,結合對數(shù)函數(shù)的性質,從而得到答案.

解答 解:∵lna>lnb⇒a>b>0⇒$\sqrt{a}$>$\sqrt$,是必要條件,
而$\sqrt{a}$>$\sqrt$,如a=1,b=0則lna>lnb不成立,不是充分條件,
故選:B.

點評 本題考查了充分必要條件,考查了對數(shù)函數(shù)的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x,x≤0}\\{lnx,x>0}\end{array}\right.$,其中e為自然對數(shù)的底數(shù),則f[f($\frac{1}{2}$)]=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,若 c2-b2=$\sqrt{3}$ab,sinA=2$\sqrt{3}$sinB,則角C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=xsinx,則$f'(\frac{π}{2})$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.動點P到點M(3,0)及點N(1,0)的距離之差為2,則點P的軌跡是( 。
A.雙曲線B.雙曲線的一支C.兩條射線D.一條射線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.宋元時期杰出的數(shù)學家朱世杰在其數(shù)學巨著《四元玉鑒》卷中“茭草形段”第一個問題“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.問底子(每層三角形邊茭草束數(shù),等價于層數(shù))幾何?”中探討了“垛枳術”中的落一形垛(“落一形”即是指頂上1束,下一層3束,再下一層6束,…,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層茭草束數(shù)),則本問題中三角垛底層茭草總束數(shù)為120.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,若a2-b2=c(b+c),則A=(  )
A.60°B.120°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.從某班5位老師中隨機選兩位老師值班,有女老師被選中的概率為$\frac{7}{10}$,則在這5位老師中,女老師有2人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[0,$\frac{π}{2}$],
(1)求|$\overrightarrow{a}$+$\overrightarrow$|關于x的表達式;
(2)求f(x)=$\overrightarrow{a}•\overrightarrow$-|$\overrightarrow{a}+\overrightarrow$|的值域.

查看答案和解析>>

同步練習冊答案