14.設(shè)函數(shù)f(x)=$\frac{{x}^{2}}{2}$+$\frac{m}{x}$,若函數(shù)f(x)的極值點(diǎn)x0滿足x0f(x0)-x03>m2,則實(shí)數(shù)m的取值范圍是(0,$\frac{3}{2}$).

分析 求出f(x)的導(dǎo)數(shù),令f′(x)=0,求出x0,將x0=$\root{3}{m}$代入不等式,得到關(guān)于m的不等式,解出即可.

解答 解:f′(x)=x-$\frac{m}{{x}^{2}}$=$\frac{{x}^{3}-m}{{x}^{2}}$,
令f′(x)=0,解得:x=$\root{3}{m}$=x0
由x0f(x0)-x03>m2,
得:$\root{3}{m}$[$\frac{{(\root{3}{m})}^{2}}{2}$+$\frac{m}{\root{3}{m}}$]>m2,
∴2m2-3m<0,
解得:0<m<$\frac{3}{2}$,
故答案為:(0,$\frac{3}{2}$).

點(diǎn)評(píng) 本題考查了函數(shù)的極值的意義,考查導(dǎo)數(shù)的應(yīng)用,解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}中,a${\;}_{7}^{2}$=a3+a11,{bn}為等比數(shù)列,且b7=a7,則b6b8的值為( 。
A.4B.2C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=2x-4,g(x)=x2,則y=f(g(x))的零點(diǎn)為( 。
A.$\sqrt{2}$B.$±\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$±\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)F是拋物線G:x2=4y的焦點(diǎn).
(1)過點(diǎn)P(0,-4)作拋物線G的切線,求切線方程;
(2)設(shè)A,B為拋物線上異于原點(diǎn)的兩點(diǎn),且滿足FA⊥FB,延長AF,BF分別交拋物線G于點(diǎn)C,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1a5a9=15,且$\frac{1}{{a}_{1}{a}_{5}}$+$\frac{1}{{a}_{5}{a}_{9}}$+$\frac{1}{{a}_{9}{a}_{1}}$=$\frac{3}{5}$,則S9=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.向量$\overrightarrow{a}$=(1,2,-2),$\overrightarrow$=(-3,x,y),且$\overrightarrow{a}$∥$\overrightarrow$,則x-y=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a,b為實(shí)數(shù),若|a|≤1,則代數(shù)式a2+b2+(a2+2-$\sqrt{1-^{2}}$)2-2ab的取值范圍是$[1,11-2\sqrt{10}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)+cosωxcosφ-sinωxsinφ(ω>0,0<φ<$\frac{π}{2}$)是偶函數(shù),相鄰兩個(gè)零點(diǎn)間距離為1.(1)求f(x)的單調(diào)遞增區(qū)間;
(2)已知△ABC為銳角三角形,角A、B、C對(duì)邊分別為a、b、c,若f($\frac{A}{π}$)=1,a=7,b=8,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,求證:S△ABC=$\frac{{a}^{2}sinBsinC}{2sin(B+C)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案