7.如圖,在△ABC中,BC邊上的中線AD長(zhǎng)為3,且BD=2,$sinB=\frac{{3\sqrt{6}}}{8}$.
(Ⅰ)求sin∠BAD的值;
(Ⅱ)求cos∠ADC及AC邊的長(zhǎng).

分析 (1)由正弦定理即可解得sin∠BAD的值;
(2)先求得cosB,cos∠BAD,利用兩角和的余弦函數(shù)公式可求cos∠ADC,由題意可求DC=BD=2,利用余弦定理即可求得AC的值.

解答 解:(1)在△ABD中,BD=2,sinB=$\frac{3\sqrt{6}}{8}$,AD=3,
∴由正弦定理$\frac{BD}{sin∠BAD}$=$\frac{AD}{sinB}$,得sin∠BAD═$\frac{BDsinB}{AD}$=$\frac{2×\frac{3\sqrt{6}}{8}}{3}$=$\frac{\sqrt{6}}{4}$;….(5分)
(2)∵sinB=$\frac{3\sqrt{6}}{8}$,∴cosB=$\frac{\sqrt{10}}{8}$,
∵sin∠BAD=$\frac{\sqrt{6}}{4}$,∴cos∠BAD=$\frac{\sqrt{10}}{4}$,
∴cos∠ADC=cos(∠B+∠BAD)=$\frac{\sqrt{10}}{8}$×$\frac{\sqrt{10}}{4}$-$\frac{3\sqrt{6}}{8}$×$\frac{\sqrt{6}}{4}$=-$\frac{1}{4}$,….(9分)
∵D為BC中點(diǎn),∴DC=BD=2,
∴在△ACD中,由余弦定理得:AC2=AD2+DC2-2AD•DCcos∠ADC=9+4+3=16,
∴AC=4.….(12分)

點(diǎn)評(píng) 點(diǎn)評(píng):此題考查了正弦、余弦定理,兩角和與差的余弦函數(shù)公式,熟練掌握定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|x≤-1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B和A∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知雙曲線過(guò)點(diǎn)P(-3$\sqrt{2}$,4),它的漸近線方程為y=±$\frac{4}{3}$x.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F1和F2為該雙曲線的左、右焦點(diǎn),點(diǎn)P在此雙曲線上,且|PF1|•|PF2|=41,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知某幾何體的正視圖和側(cè)視圖均如圖所示,給出下列5個(gè)圖形:

其中可以作為該幾何體的俯視圖的圖形個(gè)數(shù)是( 。
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.i是虛數(shù)單位.已知復(fù)數(shù)$Z=\frac{1+3i}{3+i}+{({1+i})}^2$,則復(fù)數(shù)Z對(duì)應(yīng)點(diǎn)落在( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知一個(gè)扇形的周長(zhǎng)是12cm,
(1)若扇形的圓心角α=300,求該扇形的半徑
(2)當(dāng)扇形半徑為何值時(shí),這個(gè)扇形的面積最大?別求出此時(shí)的圓心角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行下面的程序框圖,則輸出的m的值為(  )
A.2B.4C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)的義域?yàn)镈.對(duì)于任意的x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x_1})•f({x_2})}=M$成立,則稱函數(shù)f(x)在D上的幾何平均數(shù)為M.已知函數(shù)g(x)=3x+1(x∈[0,1]),則g(x)在區(qū)間[0,1]上的幾何平均數(shù)為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解關(guān)于x的不等式:ax2-2ax>x-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案