分析 由已知條件和正余弦定理以及基本不等式可判△ABC為正三角形,再有正弦定理可得R.
解答 解:由正弦定理可化sin2A+sin2B+sin2C=2$\sqrt{3}$sinAsinBsinC為a2+b2+c2=2$\sqrt{3}$absinC,
再由余弦定理可得c2=a2+b2-2abcosC,代入上式可得2(a2+b2)=2$\sqrt{3}$absinC+2abcosC,
∴2(a2+b2)=4ab($\frac{\sqrt{3}}{2}$sinC+$\frac{1}{2}$cosC)=4absin(C+$\frac{π}{6}$),
∴a2+b2=2absin(C+$\frac{π}{6}$)≤2ab,
又由基本不等式可得a2+b2≥2ab,∴a2+b2=2ab,
∴(a-b)2=0且sin(C+$\frac{π}{6}$)=1,
∴a=b且C=$\frac{π}{3}$,∴△ABC為正三角形,
由正弦定理可得2R=$\frac{a}{sinA}$=$\frac{2}{sin\frac{π}{3}}$=$\frac{2}{\frac{\sqrt{3}}{2}}$,
解得R=$\frac{2\sqrt{3}}{3}$
故答案為:$\frac{2\sqrt{3}}{3}$
點(diǎn)評(píng) 本題考查正余弦定理的應(yīng)用以及三角形形狀的判斷,涉及基本不等式的應(yīng)用,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交 | C. | 異面 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin(2x+$\frac{π}{3}$) | B. | sin($\frac{x}{2}+\frac{π}{3}$) | C. | sin(2π-$\frac{2π}{3}$) | D. | sin($\frac{x}{2}-\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com