3.集合A={x|-1≤x≤2},B={x|x<1},則A∩(∁RB)=( 。
A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}

分析 由集合B,求出集合B的補集,然后求出集合A和集合B補集的交集即可.

解答 解:由B={x|x<1},
得到CRB={x|x≥1},
又集合A={x|-1≤x≤2},
則A∩(CRB)={x|1≤x≤2}.
故選:D.

點評 此題考查學(xué)生會進行補集及交集的運算,是一道基礎(chǔ)題.學(xué)生在求補集時注意全集的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知α,β均為銳角,且滿足關(guān)系式12sin2(π+α)+20sin2($\frac{3π}{2}$-β)+12sin(3π+α)-20$\sqrt{2}$sin($\frac{π}{2}$-β)+13=0,求α與β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和是Sn,且Sn+$\frac{1}{2}$an=1.
(1)求數(shù)列{an}的通項公式;
(2)記bn=log${\;}_{\frac{1}{3}}$$\frac{{a}_{n}}{2}$,求數(shù)列{$\frac{1}{_{n}_{n+2}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.運行如圖所示的偽代碼,其結(jié)果為$\frac{1008}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+y≥2}\\{2x+y≤4}\end{array}\right.$,則(x+1)2+y2的最小值為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\sqrt{5}$C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,梯形ABCD中,AB∥CD,BC=6,tan∠ABC=-2$\sqrt{2}$.
(Ⅰ)若∠ACD=$\frac{π}{4}$,求AC的長;
(Ⅱ)若BD=9,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.i505的虛部為( 。
A.-iB.iC.-lD.l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)(1-x)n=a0+a1x+a2x2+…+anxn,n∈N*,n≥2.
(1)設(shè)n=11,求|a6|+|a7|+|a8|+|a9|+|a10|+|a11|的值;
(2)設(shè)bk=$\frac{k+1}{n-k}$ak+1(k∈N,k≤n-1),Sm=b0+b1+b2+…+bm(m∈N,m≤n-1),求|$\frac{{S}_{m}}{{C}_{n-1}^{m}}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:$?x∈[\frac{1}{2},2],{x^2}-2x+2-a≥0$,命題q:?x∈R,x2-2ax+2-a=0,若命題“p∧q”是真命題,則實數(shù)a的取值范圍是( 。
A.(-∞,-2]∪{1}B.(-∞,-2]∪[1,2]C.[1,+∞)D.[-2,1]

查看答案和解析>>

同步練習(xí)冊答案