5.等比數(shù)列{an}中,a3a5=64,則a4=( 。
A.8B.-8C.8或-8D.16

分析 由題意和等比數(shù)列的性質(zhì)可得a42=64,解方程可得.

解答 解:∵等比數(shù)列{an}中,a3a5=64,
∴由等比數(shù)列的性質(zhì)可得a42=a3a5=64,
解得a4=±8,
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,E為AD上一點(diǎn),四邊形BCDE為矩形,∠PAD=60°,PA=ED=2AE=2.
(I)若$\overrightarrow{PF}=λ\overrightarrow{PC}$(λ∈R),且PA∥平面BEF,求λ的值;
(Ⅱ)求證:CB⊥平面PEB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)復(fù)數(shù)z=3+i,且iz=a+bi(a,b∈R),則a+b等于( 。
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知曲線C的極坐標(biāo)是ρ=4,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,又直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2t}\\{y=-5+t}\end{array}\right.$(t為參數(shù)).
(1)寫(xiě)出曲線C與直線l的普通方程;
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{\sqrt{3}}{2}y}\end{array}\right.$得到曲線C′,在曲線上找一點(diǎn),使這一點(diǎn)到直線l的距離最短,并求出該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)$f(x)=sin(2x-\frac{π}{6})$,則該函數(shù)的最小正周期為π,f(x)在$[0,\frac{π}{2}]$的最小值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若“任意x∈[0,$\frac{π}{3}$],tanx≤m”是真命題,則實(shí)數(shù)m的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤(rùn)不超過(guò)20萬(wàn)元時(shí),按銷售利潤(rùn)的20%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤(rùn)超過(guò)20萬(wàn)元時(shí),若超出部分為A萬(wàn)元,則超出部分按2log5(A+2)進(jìn)行獎(jiǎng)勵(lì),沒(méi)超出部分仍按銷售利潤(rùn)的20%進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金總額為y(單位:萬(wàn)元),銷售利潤(rùn)為x(單位:萬(wàn)元).
(1)寫(xiě)出該公司激勵(lì)銷售人員獎(jiǎng)勵(lì)方案的函數(shù)表達(dá)式;
(2)如果業(yè)務(wù)員老張獲得8萬(wàn)元的獎(jiǎng)勵(lì),那么他的銷售利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=$\sqrt{-3-x}$的定義域?yàn)榧螦.關(guān)于$x的不等式{({\frac{1}{2}})^{2x}}>{2^{-a-x}}(a為常數(shù))$的解集為B.
(1)求集合A和B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.下列四個(gè)命題:
①若0>a>b,則$\frac{1}{a}<\frac{1}$;②x>0,$x+\frac{1}{x-1}$的最小值為3;
③橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$比橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$更接近于圓;
④設(shè)A,B為平面內(nèi)兩個(gè)定點(diǎn),若有|PA|+|PB|=2,則動(dòng)點(diǎn)P的軌跡是橢圓;
其中真命題的序號(hào)為①③.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案