2.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)分別為棱DD1,AB上的點(diǎn),下列說(shuō)法正確的是②③④.(填上所有正確命題的序號(hào))
①AC1⊥平面B1EF;
②在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;
③△B1EF在側(cè)面BCC1B1上的正投影是面積為定值的三角形;
④當(dāng)E,F(xiàn)為中點(diǎn)時(shí),平面B1EF截該正方體所得的截面圖形是五邊形.

分析 由正方體的結(jié)構(gòu)特征,對(duì)所給的幾個(gè)命題用線面,面面之間的位置關(guān)系直接判斷正誤即可得到答案.

解答 解:對(duì)于①A1C⊥平面B1EF,不一定成立,因?yàn)锳1C⊥平面AC1D,而兩個(gè)平面面B1EF與面AC1D不一定平行.
對(duì)于②在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線,此兩平面相交,一個(gè)面內(nèi)平行于兩個(gè)平面的交線一定平行于另一個(gè)平面,此結(jié)論正確;
對(duì)于③△B1EF在側(cè)面BCC1B1上 的正投影是面積為定值的三角形,此是一個(gè)正確的結(jié)論,因?yàn)槠渫队叭切蔚囊贿吺抢釨B1,而E點(diǎn)在面上的投影到此棱BB1的距離是定值,故正確;
對(duì)于④,當(dāng)E,F(xiàn)為中點(diǎn)時(shí)平面B1EF截該正方體所得的截面圖形是五邊形B1QEPF,
故答案為:②③④

點(diǎn)評(píng) 本題考點(diǎn)是棱柱的結(jié)構(gòu)特征,考查對(duì)正方體的幾何特征的了解,以及線面垂直,線面平行等位置關(guān)系的判定,涉及到的知識(shí)點(diǎn)較多,綜合性強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=-a2x2+ax-1,x∈[0,1].若a≥$\frac{1}{2}$,則f(x)的最大值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某處發(fā)生火災(zāi),急需提供A,B,C三種型號(hào)的滅火器進(jìn)行救援,其中A,B,C三種型號(hào)的產(chǎn)品數(shù)量依次構(gòu)成公比為3的等比數(shù)列,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為130的樣本,則應(yīng)從C型號(hào)產(chǎn)品中抽取的數(shù)量為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow$=(-1,$\frac{1}{2}$,m),且$\overrightarrow{a}$⊥$\overrightarrow$,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求證:無(wú)論m取什么實(shí)數(shù),直線l恒過(guò)第一象限;
(2)求直線l被圓C截得的弦長(zhǎng)最短時(shí)m的值以及最短長(zhǎng)度;
(3)設(shè)直線l與圓C相交于A、B兩點(diǎn),求AB中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=loga(1-2x)-loga(1+2x)(a>0,a≠1).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三棱錐P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=4,點(diǎn)E、F分別為PC、PA的中點(diǎn).
(1)求證:BE⊥平面PAC;
(2)求三棱錐F-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知二次函數(shù)f(x)=x2-4x+3.
(1)指出函數(shù)的對(duì)稱軸、頂點(diǎn)坐標(biāo)(要寫出求解過(guò)程);
(2)指出其圖象可由函數(shù)y=x2的圖象如何變換得到的;
(3)當(dāng)x∈[1,4]時(shí),求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.(重點(diǎn)中學(xué)做)不等式$\frac{4}{x-1}$≤x-1的解集是( 。
A.(-∞,-1]∪(1,3]B.[-1,1)∪[3,+∞)C.(-∞,-1]∪[3,+∞)D.[-1,1)∪(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案