15.已知$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AC}$,$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$,則$\overrightarrow{DE}$=$\frac{1}{4}$$\overrightarrow{BC}$.

分析 根據(jù)向量的運(yùn)算法則計(jì)算即可.

解答 解:∵$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AC}$,$\overrightarrow{AE}$=$\frac{1}{4}$$\overrightarrow{AB}$,
∴$\overrightarrow{DE}$=$\overrightarrow{AE}$-$\overrightarrow{AD}$=$\frac{1}{4}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{1}{4}$$\overrightarrow{BC}$,
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查了向量的運(yùn)算法則,考查向量的幾何意義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E為PA的中點(diǎn).
(Ⅰ)設(shè)面PAB∩面PCD=l,求證:CD∥l;
(Ⅱ)求二面角B-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線y=x+1與函數(shù)f(x)=aex+b的圖象相切,且f′(1)=e.
(I)求實(shí)數(shù)a,b的值;
(Ⅱ)若存在x∈(0,$\frac{3}{2}$),使得2mf(x-1)+nf(x)=mx(m≠0)成立,求$\frac{n}{m}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{x}$在x=$\frac{1}{4}$處的切線為l,函數(shù)g(x)=kx+m(m≥0)的圖象與l平行.
(1)當(dāng)m=$\frac{9}{4}$時(shí),求f(x)圖象上的點(diǎn)到g(x)圖象上點(diǎn)的最短距離;
(2)若不等式|f(x)-mg(x)|≤|f(x)|對(duì)x∈[1,4]恒成立,求m的取值區(qū)間M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,對(duì)于任意點(diǎn)M,點(diǎn)M關(guān)于A點(diǎn)的對(duì)稱點(diǎn)為S,點(diǎn)S關(guān)于B點(diǎn)的對(duì)稱點(diǎn)為N.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{MN}$;
(2)用|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{MN}$|∈[2$\sqrt{3}$,2$\sqrt{7}$],求$\overrightarrow{a}$與$\overrightarrow$的夾角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求下列各三角函數(shù)的值:
(1)sin1290°;
(2)tan(-1665°);
(3)cos(-$\frac{8}{3}$π);
(4)cot(-$\frac{19}{6}π$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某商場(chǎng)在元旦舉行購(gòu)物抽獎(jiǎng)促銷活動(dòng),規(guī)定顧客從裝有編號(hào)為0,1,2,3,4的五個(gè)相同小球的抽獎(jiǎng)箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號(hào)之和等于7則中一等獎(jiǎng).等于6或5則中二等獎(jiǎng),等于4則中三等獎(jiǎng),其余結(jié)果為不中獎(jiǎng).
(1)求中二等獎(jiǎng)的概率;
(2)求不中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在等比數(shù)列{an}中,a6=$\frac{7}{32}$,q=$\frac{1}{2}$,求a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在拋擲一顆骰子的試驗(yàn)中,事件A表示“不大于3的點(diǎn)數(shù)出現(xiàn)”,事件B表示“小于5的點(diǎn)數(shù)出現(xiàn)”,則事件A∪$\overline{B}$($\overline{B}$表示B的對(duì)立事件)發(fā)生的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{5}{6}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案