分析 設(shè)前三個(gè)數(shù)分別為a-d,a,a+d,由題意列關(guān)于a,d的方程組求得答案.
解答 解:設(shè)前三個(gè)數(shù)分別為a-d,a,a+d,
由題意可得$\left\{\begin{array}{l}{(a-d)+a+(a+d)=27}\\{(a+d)^{2}=16a}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=9}\\{d=3}\end{array}\right.$或$\left\{\begin{array}{l}{a=9}\\{d=-22}\end{array}\right.$.
當(dāng)$\left\{\begin{array}{l}{a=9}\\{d=3}\end{array}\right.$時(shí),前三個(gè)數(shù)分別為6,9,12;
當(dāng)$\left\{\begin{array}{l}{a=9}\\{d=-22}\end{array}\right.$時(shí),前三個(gè)數(shù)分別是31,9,-13,不合題意.
∴三個(gè)數(shù)分別為6,9,12.
點(diǎn)評(píng) 本題考查等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(n)中共有n項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | |
B. | f(n)中共有n+1項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | |
C. | f(n)中共有n2-n項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$ | |
D. | f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1-ln2}{2}$ | B. | $\frac{ln2}{2}$ | C. | $\frac{1+ln2}{2}$ | D. | $\frac{2-2ln2}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com