A. | $\frac{\sqrt{3}}{10}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{3}{5}$ |
分析 tanx=$\frac{1}{3}$,sin2x=2sinxcosx=$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2tanx}{ta{n}^{2}x+1}$,即可得出.
解答 解:∵tanx=$\frac{1}{3}$,
則sin2x=2sinxcosx=$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2tanx}{ta{n}^{2}x+1}$=$\frac{2×\frac{1}{3}}{1+(\frac{1}{3})^{2}}$=$\frac{3}{5}$.
故選:D.
點評 本題考查了同角三角函數(shù)基本關(guān)系式、“弦化切”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {an}是以q(q≠1)為公比的等比數(shù)列,則a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$ | |
B. | 若n∈N*,則cos$\frac{α}{2}$•cos$\frac{α}{{2}^{2}}$•cos$\frac{α}{{2}^{3}}$…cos$\frac{α}{{2}^{n}}$=$\frac{sinα}{{2}^{n}sin\frac{α}{{2}^{n}}}$ | |
C. | 若n∈N*,則n2+3n+1是質(zhì)數(shù) | |
D. | (n2-1)+22(n2-22)+…+n2(n2-n2)=$\frac{{n}^{2}(n-1)(n+1)}{4}$對任何n∈N*都成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{2}$ | B. | $\frac{5}{2}$ | C. | -$\frac{5}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\root{2}{6}$ | C. | 6 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{y-{y}_{1}}{x-{x}_{1}}$=k為過點P(x1,y1)且斜率為k的直線方程 | |
B. | 過y軸上一點(0,b)得直線方程可以表示為y=kx+b | |
C. | 若直線在x軸、y軸的截距分別為a與b,則該直線方程為$\frac{x}{a}$+$\frac{y}$=1 | |
D. | 方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示過兩點P(x1,y1)、Q(x2,y2)一條直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com