分析 利用幾何體求出三角形CAB1的三個(gè)邊長(zhǎng),然后求解C到直線AB1的距離.
解答 解:在正三棱柱ABC-A1B1C1中,若BB1=$\sqrt{2}$,AB=2$\sqrt{2}$,連結(jié)B1C,
可得AB1=$\sqrt{{(2\sqrt{2})}^{2}+{(\sqrt{2})}^{2}}$=$\sqrt{10}$,
B1C$\sqrt{{(2\sqrt{2})}^{2}+{(\sqrt{2})}^{2}}$=$\sqrt{10}$
AC=2$\sqrt{2}$.作B1F⊥AC于F,
B1F=$\sqrt{(\sqrt{10})^{2}-(\sqrt{2})^{2}}$=$2\sqrt{2}$,
在三角形ACB1中,CE⊥AB1,CE就是點(diǎn)C到直線AB1的距離:$\frac{AC•{B}_{1}F}{{AB}_{1}}$=$\frac{2\sqrt{2}×2\sqrt{2}}{\sqrt{10}}$=$\frac{4\sqrt{10}}{5}$.
點(diǎn)評(píng) 本題考查空間點(diǎn)線面距離的計(jì)算,考查計(jì)算能力空間想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin15°cos15° | B. | ${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$ | ||
C. | $\frac{{1+tan{{15}^0}}}{{1-tan{{15}^0}}}$ | D. | $\sqrt{\frac{1+cos30°}{2}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com