1.不等式$\frac{5-x}{x-1}≥1$的解集為(  )
A.(-∞,-3)∪(3,+∞)B.(-∞,1)∪(3,+∞)C.[1,3]D.(1,3]

分析 根據(jù)題意,將原不等式變形可得$\frac{6-2x}{x-1}$≥0,進而可以轉(zhuǎn)化為(6-2x)(x-1)≥0且x≠1;解可得答案.

解答 解:根據(jù)題意,不等式$\frac{5-x}{x-1}≥1$可以變形為$\frac{6-2x}{x-1}$≥0,
即其等價于(6-2x)(x-1)≥0且x≠1;
解可得1<x≤3,
故選:D.

點評 本題考查分式不等式的解法,需要將分式不等式轉(zhuǎn)化為整式不等式求解,注意分式的分母不能為0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義在R上函數(shù)y=f(x+1)是偶函數(shù),且在[1,+∞)上單調(diào),若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a20),則{an}的前25項之和為( 。
A.0B.$\frac{25}{2}$C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.f′(x)是f(x)=cosx的導(dǎo)函數(shù),則$f'(\frac{π}{2})$的值是( 。
A.3B.-3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}為等比數(shù)列,數(shù)列{bn}為等差數(shù)列,且a2a3=a5=32,b2+b3=b5=5.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,求和Tn=b1S1+b2S2+…+bnSn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)的定義域為D,對給定的正數(shù)k,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)遞增函數(shù);②f(x)在[a,b]上的值域為[ka,kb],則稱區(qū)間[a,b]為y=f(x)的k級“調(diào)和區(qū)間”.下列結(jié)論錯誤的是(  )
A.函數(shù)f(x)=x3(x∈[-2016,2016]存在1級“調(diào)和區(qū)間”
B.函數(shù)f(x)=ex(x∈R)不存在2級“調(diào)和區(qū)間”
C.函數(shù)f(x)=5elnx存在3級“調(diào)和區(qū)間”
D.函數(shù)f(x)=tanx(x$∈(-\frac{π}{2},\frac{π}{2})$)不存在4級“調(diào)和區(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知ab≠0,且x2a=x-b(x>0),則(xa+2xb6展開式中的常數(shù)項是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標系xOy中,⊙A的方程為(x-2)2+(y-2)2=1,在第一象限內(nèi)兩半徑都是r,且互相外切的⊙O1和⊙O2均與⊙A相外切,又⊙O1,⊙O2分別與x軸,y軸相切,求r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知O為坐標原點,過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,如果x1+x2=6,那么|AB|=8,如果OA⊥OB,那么y1y2=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標系中,點O(0,0),P(3,$\sqrt{3}$),將向量$\overrightarrow{OP}$饒點O按逆時針方向旋轉(zhuǎn)$\frac{π}{2}$后得向量$\overrightarrow{OQ}$,則點Q的坐標是(  )
A.(-3,$\sqrt{3}$)B.(-$\sqrt{6}$,$\sqrt{6}$)C.(-$\sqrt{3}$,3)D.(-3,3)

查看答案和解析>>

同步練習(xí)冊答案