11.在平面直角坐標(biāo)系中,點(diǎn)O(0,0),P(3,$\sqrt{3}$),將向量$\overrightarrow{OP}$饒點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{2}$后得向量$\overrightarrow{OQ}$,則點(diǎn)Q的坐標(biāo)是( 。
A.(-3,$\sqrt{3}$)B.(-$\sqrt{6}$,$\sqrt{6}$)C.(-$\sqrt{3}$,3)D.(-3,3)

分析 表示出向量$\overrightarrow{OP}$以及將向量$\overrightarrow{OP}$饒點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{2}$后得向量$\overrightarrow{OQ}$,求出點(diǎn)Q的坐標(biāo).

解答 解:復(fù)平面中,$\overrightarrow{OP}$=(3,$\sqrt{3}$)=3+$\sqrt{3}$i,
將向量$\overrightarrow{OP}$饒點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)$\frac{π}{2}$后得向量$\overrightarrow{OQ}$,
$\overrightarrow{OQ}$=$\overrightarrow{OP}$•(cos$\frac{π}{2}$+isin$\frac{π}{2}$)=(3+$\sqrt{3}$i)•i=3i-$\sqrt{3}$=-$\sqrt{3}$+3i;
所以點(diǎn)Q的坐標(biāo)是(-$\sqrt{3}$,3).
故選:C.

點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用問題,也考查了數(shù)形結(jié)合的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不等式$\frac{5-x}{x-1}≥1$的解集為( 。
A.(-∞,-3)∪(3,+∞)B.(-∞,1)∪(3,+∞)C.[1,3]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知飛機(jī)從甲地按北偏東30°的方向飛行2000km到達(dá)乙地,再?gòu)囊业匕茨掀珫|30°的方向飛行2000km到達(dá)丙地,再?gòu)谋匕次髂戏较蝻w行1000$\sqrt{2}$km到達(dá)丁地,問丁地在甲地的什么方向?丁地距甲地多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.判定下列函數(shù)的單調(diào)性.
(1)f(x)=$\frac{1}{x-1}$,x∈(1,+∞)
(2)y=x2+1,x∈(0,+∞)
(3)y=3-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.lo${g}_{{a}^{2}}$b•logb$\sqrt{a}$的值等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)0≤θ≤$\frac{π}{2}$,向量$\overrightarrow{a}$=(sinθ,cosθ-sinθ),$\overrightarrow$=(cosθ+sinθ,1)若$\overrightarrow{a}$∥$\overrightarrow$,則θ等于(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)的周期為π,f(x)在y軸右側(cè)的第一條對(duì)稱軸為x=$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=2sinωx在一個(gè)周期內(nèi)的圖象如圖所示,則ω等于( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.用“五點(diǎn)作圖法”畫出y=$\sqrt{2}$sin(2x+$\frac{π}{4}$)在[0,π]上圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案