11.設z(1+i)=i,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

分析 把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡求得z,再由復數(shù)模的計算公式得答案.

解答 解:∵z(1+i)=i,
∴$z=\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1}{2}+\frac{i}{2}$,
則|z|=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}=\frac{\sqrt{2}}{2}$.
故選:B.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知四棱臺ABCD-A1B1C1D1的上下底面分別是邊長為2和4的正方形,AA1=4且AA1⊥底面ABCD,點P為DD1的中點,Q為BC邊上的一點.
(I)若PQ∥面A1ABB1,求出PQ的長;
(Ⅱ)求證:AB1⊥面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義:設A,B是非空的數(shù)集,a∈A,b∈B,若a是b的函數(shù)且b也是a的函數(shù),則稱a與b是“和諧關系”.如等式b=a2,a∈[0,+∞)中a與b是“和諧關系”,則下列等中a與b是“和諧關系”的是(  )
A.$b=\frac{sina}{a},a∈(0,\frac{π}{2})$B.$b={a^3}+\frac{5}{2}{a^2}+2a+1,a∈(-2,-\frac{2}{3})$
C.(a-2)2+b2=1,a∈[1,2]D.|a|+|b|=1,a∈[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若tanα=4,則$\frac{sinαsin(\frac{π}{2}-α)}{sin^2α+cos2α+cos^2α}$的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.雙曲線的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{a}{cosφ}}\\{y=btanφ}\end{array}\right.$中,參數(shù)的幾何意義是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)x,則事件“3x-2≥0”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份2007200820092010201120122013
年份代號t1234567
人均純收入y2.93.33.64.44.85.25.9
(Ⅰ)求y關于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知角α終邊上有一點P(-1,2),求下列各式的值.
(1)tanα;
(2)$\frac{sinα+cosα}{cosα-sinα}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知sinα=$\frac{\sqrt{3}}{2}$,cosβ=$-\frac{1}{3}$,且tanα•tanβ>0,則cos(α-β)的值是( 。
A.-$\frac{1-2\sqrt{6}}{6}$B.-$\frac{1+2\sqrt{6}}{6}$C.$\frac{1+2\sqrt{6}}{6}$D.±$\frac{1+2\sqrt{6}}{6}$

查看答案和解析>>

同步練習冊答案