分析 (I)利用等比數(shù)列的通項(xiàng)公式即可得出;
(II)利用“裂項(xiàng)求和”即可得出.
解答 解:(Ⅰ)q>1,時(shí),a2=a1q=2;${S_3}={a_1}(1+q+{q^2})=7$,
聯(lián)立解得$\begin{array}{l}\left\{\begin{array}{l}{a_1}=1\\ q=2\end{array}\right.\end{array}$,
∴${a_n}={2^{n-1}}$.
(Ⅱ)由(Ⅰ)中,${a_n}={2^{n-1}}$,
∴${b_n}={log_2}{a_n}={log_2}{2^{n-1}}=n-1$,
${c_n}=\frac{1}{{{b_{n+1}}•{b_{n+2}}}}=\frac{1}{n•(n+1)}=(\frac{1}{n}-\frac{1}{n+1})$,
∴${T_n}={c_1}+{c_2}+…+{c_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})=1-\frac{1}{n+1}=\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、對(duì)數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-∞,1) | C. | (-1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | $\frac{1}{64}$ | C. | 64 | D. | $\frac{1}{64}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com