6.設(shè)向量$\vec a=({1,2})$,$\vec b=({\frac{1}{{{n^2}+n}},{a_n}})$(n∈N*),若$\vec a∥\vec b$,設(shè)數(shù)列{an}的前n項和為Sn,則Sn的最小值為1.

分析 利用向量共線求出數(shù)列的通項公式,然后求解數(shù)列的前n項和.

解答 解:向量$\vec a=({1,2})$,$\vec b=({\frac{1}{{{n^2}+n}},{a_n}})$(n∈N*),若$\vec a∥\vec b$,
可得an=$\frac{2}{{n}^{2}+n}$=2($\frac{1}{n}$$-\frac{1}{n+1}$).
Sn=a1+a2+a3+…+an=2[1$-\frac{1}{2}$$+\frac{1}{2}-\frac{1}{3}$$+\frac{1}{3}-\frac{1}{4}$+…+$\frac{1}{n}$$-\frac{1}{n+1}$]=$\frac{2n}{n+1}$.
數(shù)列{Sn}是遞增數(shù)列,
Sn的最小值為:S1=1.
故答案為:1.

點評 本題考查向量與數(shù)列相結(jié)合,數(shù)列的函數(shù)特征,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$-lg(3x-1)的定義域用區(qū)間表示為$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.將下列三角函數(shù)化為0°~45°內(nèi)的角的三角函數(shù).
(1)sin66°;
(2)cos74°;
(3)cos118°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知長方體ABCD-A1B1C1D1的對稱中心在坐標(biāo)原點為O,交于同一頂點的三個面分別平行于三個坐標(biāo)平面,其中頂點A(-2,-3,-1),求其他7個頂點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,在正方形紙片ABCD中,AC與BD相交于點O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則在以A(B)、C、D、O為頂點的四面體中,二面角O-AD-C的余弦值為( 。
A.$\frac{\sqrt{6}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.記函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動點.那么函數(shù)f(x)=x2-2x-10的不動點是-2,或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知?x∈(0,+∞),[(m-1)x-1](x2-mx-1)≥0恒成立,則m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的各項均為正數(shù),公比q≠1,設(shè)P=$\frac{1}{2}$(${log_{\frac{1}{2}}}{a_5}+{log_{\frac{1}{2}}}{a_7}$),Q=${log_{\frac{1}{2}}}\frac{{{a_3}+{a_9}}}{2}$,則P與Q的大小關(guān)系是( 。
A.P≥QB.P<QC.P≤QD.P>Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.滿足2n-1<(n+1)2的最大正整數(shù)n的取值是( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案