14.已知f(x)的值域為[$\frac{3}{8}$,$\frac{4}{9}$],則函數(shù)y=f(x)+$\sqrt{1-2f(x)}$的值域為( 。
A.[$\frac{7}{9}$,$\frac{5}{4}$]B.[$\frac{5}{9}$,$\frac{3}{4}$]C.[$\frac{7}{9}$,$\frac{7}{8}$]D.[$\frac{8}{9}$,$\frac{5}{4}$]

分析 化簡可得$\frac{1}{9}$≤1-2f(x)≤$\frac{1}{4}$,令t=$\sqrt{1-2f(x)}$,t∈[$\frac{1}{3}$,$\frac{1}{2}$],從而可得y=$\frac{1-{t}^{2}}{2}$+t=$\frac{-(t-1)^{2}+2}{2}$,從而求值域.

解答 解:∵f(x)的值域為[$\frac{3}{8}$,$\frac{4}{9}$],
∴$\frac{1}{9}$≤1-2f(x)≤$\frac{1}{4}$,
令t=$\sqrt{1-2f(x)}$,t∈[$\frac{1}{3}$,$\frac{1}{2}$],
則f(x)=$\frac{1-{t}^{2}}{2}$,
故y=f(x)+$\sqrt{1-2f(x)}$
=$\frac{1-{t}^{2}}{2}$+t=$\frac{-(t-1)^{2}+2}{2}$,
∵t∈[$\frac{1}{3}$,$\frac{1}{2}$],
∴$\frac{14}{9}$≤-(t-1)2+2≤$\frac{7}{4}$,
∴$\frac{7}{9}$≤$\frac{-(t-1)^{2}+2}{2}$≤$\frac{7}{8}$,
故選:C.

點評 本題考查了函數(shù)的值域的求法及換元法的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知cosx+sinx=$\frac{{3\sqrt{2}}}{5}$,那么sin2x=( 。
A.$\frac{18}{25}$B.$-\frac{7}{25}$C.$±\frac{24}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若f(x)是一次函數(shù)且在R上單調(diào)遞減,f[f(x)]=4x-1,則f(x)的解析式為f(x)=-2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)的定義域為R,且滿足f(4)=1,f′(x)為f(x)的導函數(shù),又知y=f′(x)的圖象如圖所示,若兩個正數(shù)a,b滿足,f(2a+b)<1,則$\frac{b+2}{a+1}$的取值范圍是( 。
A.$({\frac{2}{3},6})$B.$[{\frac{2}{3},6}]$C.$[\frac{1}{4},\frac{5}{2}]$D.$({\frac{1}{4},\frac{5}{2}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設全集U=R,A={x|x≤2,x∈R},B={1,2,3,4},則B∩∁UA=( 。
A.{4}B.{3,4}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,則f(f(1))的值是(  )
A.-2B.2C.-4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)y=$\sqrt{2-3x}$-(x+1)0的定義域為( 。
A.(-1,$\frac{2}{3}$]B.(-1,$\frac{2}{3}$)C.(-∞,-1)∪(-1,$\frac{2}{3}$]D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某學校有老師200人,男學生1200人,女學生1000人,現(xiàn)用分層抽樣的方法從全體師生中抽取一個容量為n的樣本,已知女學生一共抽取了80人,則n的值是( 。
A.193B.192C.191D.190

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.求不等式($\frac{1}{2}$)x-2>($\frac{1}{2}$)2x的解集為{x|x>-2}.

查看答案和解析>>

同步練習冊答案