14.設(shè)a∈R,若x>0時,均有(3ax-2)(x2-ax-2)≥0,則a=$\frac{\sqrt{6}}{3}$.

分析 構(gòu)造函數(shù)y1=3ax-2,y2=x 2-ax-2,它們都過定點P(0,-2),函數(shù)y2=x 2-ax-2,顯然過點M($\frac{2}{3a}$,0),計算即可得到答案.

解答 解:構(gòu)造函數(shù)y1=3ax-2,y2=x 2-ax-2,它們都過定點P(0,-2),
考查函數(shù)y1=3ax-2,令y=0,得M($\frac{2}{3a}$,0),∴a>0;
考查函數(shù)y2=x 2-ax-2,顯然過點M($\frac{2}{3a}$,0),代入得:$\frac{4}{9{a}^{2}}$-$\frac{2}{3}$-2=0,
解之得:a=$\frac{\sqrt{6}}{3}$,或a=-$\frac{\sqrt{6}}{3}$(舍去).
故答案為:$\frac{\sqrt{6}}{3}$

點評 本題考查不等式恒成立問題,解題的關(guān)鍵是構(gòu)造函數(shù),利用函數(shù)的性質(zhì)求解.在x>0的整個區(qū)間上,我們可以將其分成兩個區(qū)間,在各自的區(qū)間內(nèi)恒正或恒負,即可得到結(jié)論

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a=(3,-4)$,$\overrightarrow b=(x,y)$,若$\overrightarrow a$∥$\overrightarrow b$,則(  )
A.3x-4y=0B.3x+4y=0C.4x+3y=0D.4x-3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知loga2=m,loga3=n,則a2m+n=( 。
A.6B.7C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此橢圓上存在不同的兩點A,B關(guān)于直線y=4x+m對稱,則實數(shù)m的取值范圍是(  )
A.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{2}}{13}$)B.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)C.(-$\frac{\sqrt{2}}{13}$,$\frac{2\sqrt{13}}{13}$)D.(-$\frac{2\sqrt{3}}{13}$,$\frac{2\sqrt{3}}{13}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{2x+y-4≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+y取得最大值時的最優(yōu)解不唯一,則實數(shù)a的值為

( 。
A.-1B.2C.-1或 2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.交通部門對某路段公路上行駛的汽車速度實施監(jiān)控,從速度在50-90km/h的汽車中抽取150輛進行分析,得到數(shù)據(jù)的頻率分布直方圖如圖所示,則速度在70km/h以下的汽車有75輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,且4an+2an+1-9anan+1=1(n∈N*
(1)求a2,a3,a4;
(2)由此猜想{an}的通項公式,并用數(shù)學(xué)歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.未來制造業(yè)對零件的精度要求越來越高.3D打印通常是采用數(shù)字技術(shù)材料打印機來實現(xiàn)的,常在模具制造、工業(yè)設(shè)計等領(lǐng)域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術(shù)打印而成的零部件.該技術(shù)應(yīng)用十分廣泛,可以預(yù)計在未來會有廣闊的發(fā)展空間.某制造企業(yè)向A高校3D打印實驗團隊租用一臺3D打印設(shè)備,用于打印一批對內(nèi)徑有較高精度要求的零件.該團隊在實驗室打印出了一批這樣的零件,從中隨機抽取10件零件,度量其內(nèi)徑的莖葉圖如圖所示(單位:μm).
(I)計算平均值μ與標(biāo)準(zhǔn)差σ
(Ⅱ)假設(shè)這臺3D打印設(shè)備打印出品的零件內(nèi)徑Z服從正態(tài)分布N(μ,σ);該團隊到工廠安裝調(diào)試后,試打了5個零件.度量其內(nèi)徑分別為(單位:μm):86、95、103、109、118,試問此打印設(shè)備是否需要進一步調(diào)試,為什么?
參考數(shù)據(jù):P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an},{bn}(bn≠0,n∈N*)滿足bn+1=$\frac{{a}_{n+1}•_{n}}{{a}_{n}+2_{n}}$,且a1=b1=1.
(1)令cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的通項公式;
(2)若數(shù)列{bn}為各項均為正數(shù)的等比數(shù)列,且b32=9b2b6,求數(shù)列{an}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案