16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,A,B分別為左、右頂點,F(xiàn)2為其右焦點,P是橢圓C上異于A,B的動點,且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為-2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過左焦點F1的直線交橢圓于M,N兩點,求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范圍.
分析 (1)由橢圓的離心率得到a,b的關(guān)系,再由$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為-2求得a的值,則b可求,橢圓方程可求;
(2)由(1)知F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,0),則斜率不存在時,用坐標(biāo)分別表示出$\overrightarrow{{F}_{2}M}$,$\overrightarrow{{F}_{2}N}$的,直接求得$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$;直線斜率存在時,設(shè)直線MN的方程為y=k(x+$\sqrt{2}$),代入橢圓方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$,消去y得(1+2k2)x2+4$\sqrt{2}$k2x+4(k2-1)=0.利用根與系數(shù)的關(guān)系求得M,N的橫縱坐標(biāo)的積,把$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$轉(zhuǎn)化為M,N的橫坐標(biāo)的和與積的形式,代入后化為關(guān)于k的函數(shù)式得答案.
解答 解:(1)由題意知,$\frac{c}{a}=\frac{\sqrt{2}}{2}$,即$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$,
∴$\frac{{a}^{2}-^{2}}{{a}^{2}}=\frac{1}{2}$,則a2=2b2,
設(shè)P(x,y),
∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=(-a-x,-y)•(a-x,-y)=x2-a2+y2=${x}^{2}-{a}^{2}+\frac{{a}^{2}}{2}-\frac{{x}^{2}}{2}=\frac{1}{2}({x}^{2}-{a}^{2})$,
∵-a≤x≤a,∴當(dāng)x=0時,$(\overrightarrow{PA}•\overrightarrow{PB})_{min}=-\frac{{a}^{2}}{2}=-2$,
∴a2=4,則b2=2.
∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)由a2=4,b2=2,得c=$\sqrt{{a}^{2}-^{2}}=\sqrt{2}$,
∴${F}_{1}(-\sqrt{2},0),{F}_{2}(\sqrt{2},0)$.
則直線斜率不存在時,
M(-$\sqrt{2}$,1),N(-$\sqrt{2}$,-1),于是$\overrightarrow{{F}_{2}M}$=(-2$\sqrt{2}$,1),$\overrightarrow{{F}_{2}N}$=(-2$\sqrt{2}$,-1),
∴$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=7;
直線斜率存在時,設(shè)直線MN的方程為y=k(x+$\sqrt{2}$),代入橢圓方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$,消去y得
(1+2k2)x2+4$\sqrt{2}$k2x+4(k2-1)=0.
設(shè)M(x1,y1),N(x2,y2),
則${x}_{1}+{x}_{2}=-\frac{4\sqrt{2}{k}^{2}}{1+2{k}^{2}},{x}_{1}{x}_{2}=\frac{4({k}^{2}-1)}{1+2{k}^{2}}$,
∵$\overrightarrow{{F}_{2}M}=({x}_{1}-\sqrt{2},{y}_{1}),\overrightarrow{{F}_{2}N}=({x}_{2}-\sqrt{2},{y}_{2})$,
∴$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=${x}_{1}{x}_{2}-\sqrt{2}({x}_{1}+{x}_{2})+2+{k}^{2}({x}_{1}+\sqrt{2})({x}_{2}+\sqrt{2})$
=$(1+{k}^{2}){x}_{1}{x}_{2}+(\sqrt{2}{k}^{2}-\sqrt{2})({x}_{1}+{x}_{2})$+2k2+2
=$(1+{k}^{2})\frac{4({k}^{2}-1)}{1+2{k}^{2}}+\sqrt{2}({k}^{2}-1)•\frac{-4\sqrt{2}{k}^{2}}{1+2{k}^{2}}+2{k}^{2}+2$
=7-$\frac{9}{1+2{k}^{2}}$.
∵1+2k2≥1,∴0<$\frac{1}{1+2{k}^{2}}$≤1,
∴7-$\frac{9}{1+2{k}^{2}}$∈[-2,7),
綜上知,$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$∈[-2,7].
點評 本題以向量為載體,考查橢圓的標(biāo)準(zhǔn)方程,考查向量的數(shù)量積,考查運算能力,解題時應(yīng)注意分類討論,同時正確用坐標(biāo)表示向量,是中檔題