A. | 1 | B. | $\frac{17}{16}$-$\sqrt{5}$ | C. | -$\frac{15}{16}$-$\sqrt{5}$ | D. | -2 |
分析 通過a的范圍,分類討論求出方程的解,即可得到結果.
解答 解:當a>1時,f(f(a))=1,可得log2(log2a)=1,可得log2a=2,可得a=4.
當a∈(0,1]時,log2a<0,由f(f(a))=1,可得(log2a)2+4log2a+1=1,
解得log2a=0或log2a=-4,解得a=1,a=$\frac{1}{16}$.
當a$<-2-\sqrt{3}$或-2+$\sqrt{3}$<a≤0時,f(a)=a2+4a+1>0,
由f(f(a))=1,
∴l(xiāng)og2(a2+4a+1)=1,
即a2+4a-1=0,
解得a=-2-$\sqrt{5}$,a=-2+$\sqrt{5}$>0舍去.
當$-2-\sqrt{3}≤a≤-2+\sqrt{3}$時,f(a)=a2+4a+1≤0,
由f(f(a))=1,可得(a2+4a+1)2+4(a2+4a+1)+1=1,
解得(a2+4a+1)2+4(a2+4a+1)=0,可得a2+4a+1=0或a2+4a+1=-4,
解a2+4a+1=0得:a=-2-$\sqrt{3}$,a=-2+$\sqrt{3}$;
解a2+4a+1=-4得:a無解.
實數(shù)a的所有取值的和為:4+1+$\frac{1}{16}$-2-$\sqrt{5}$-2-$\sqrt{3}$$-2+\sqrt{3}$=$-\frac{15}{16}-\sqrt{5}$.
故選:C.
點評 本題考查函數(shù)與方程的綜合應用,考查分類討論思想以及轉化思想的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y=\frac{1}{x}$ | B. | y=-tanx | C. | $y=\frac{{1-{2^x}}}{{1+{2^x}}}$ | D. | y=-x3(-1<x≤1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x2 | B. | f(x)=-x3 | C. | f(x)=x|x| | D. | f(x)=x+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x2-x | B. | f(x)=$\frac{1}{x}$ | C. | f(x)=1-x | D. | f(x)=|x| |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com