A. | $y=\frac{1}{x}$ | B. | y=-tanx | C. | $y=\frac{{1-{2^x}}}{{1+{2^x}}}$ | D. | y=-x3(-1<x≤1) |
分析 根據(jù)函數(shù)奇偶性 單調(diào)性的性質(zhì)分別進(jìn)行判斷即可.
解答 解:A.y=$\frac{1}{x}$在定義域上不是單調(diào)函數(shù),
B.y=-tanx在定義域上不是單調(diào)函數(shù),
C.f(-x)=$\frac{1{-2}^{-x}}{1{+2}^{-x}}$=-$\frac{1{-2}^{x}}{1{+2}^{x}}$=-f(x),則函數(shù)為減函數(shù),
f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$=$\frac{2-(1{+2}^{x})}{1{+2}^{x}}$=$\frac{2}{1{+2}^{x}}$-1,則函數(shù)f(x)為減函數(shù),滿足條件.
D.定義域關(guān)于原點(diǎn)不對(duì)稱(chēng),為非奇非偶函數(shù),
故選:C.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見(jiàn)函數(shù)的奇偶性和單調(diào)性的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,3] | B. | [-1,3] | C. | [-1,+∞) | D. | (-∞,-1]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平行 | B. | 重合 | C. | 垂直 | D. | 夾角等于$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{17}{16}$-$\sqrt{5}$ | C. | -$\frac{15}{16}$-$\sqrt{5}$ | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com