18.若$\frac{2π}{3}$<α<$\frac{7π}{6}$,$\frac{π}{12}$<β<$\frac{π}{3}$,cos(α+$\frac{5π}{6}$)=$\frac{2}{3}$,sin($\frac{π}{3}$+2β)=$\frac{1}{6}$,則sin(α-2β)=$\frac{2\sqrt{35}+\sqrt{5}}{18}$.

分析 由條件利用同角三角函數(shù)的基本關系求得sin(α+$\frac{5π}{6}$)、cos($\frac{π}{3}$+2β)的值,再利用誘導公式,兩角和差的正弦公式,求得sin(α-2β)=-cos[(α+$\frac{5π}{6}$)-($\frac{π}{3}$+2β)]的值.

解答 解:由 $\frac{2π}{3}$<α<$\frac{7π}{6}$,$\frac{π}{12}$<β<$\frac{π}{3}$,可得α+$\frac{5π}{6}$∈( $\frac{3π}{2}$,2π),2β+$\frac{π}{3}$∈($\frac{π}{2}$,π),
∵cos(α+$\frac{5π}{6}$)=$\frac{2}{3}$,sin($\frac{π}{3}$+2β)=$\frac{1}{6}$,∴sin(α+$\frac{5π}{6}$)=-$\sqrt{{1-cos}^{2}(α+\frac{5π}{6})}$=-$\frac{\sqrt{5}}{3}$,
cos($\frac{π}{3}$+2β)=-$\sqrt{{1-sin}^{2}(2β+\frac{π}{3})}$=-$\frac{\sqrt{35}}{6}$,
∴sin(α-2β)=-cos[(α+$\frac{5π}{6}$)-($\frac{π}{3}$+2β)]=-cos(α+$\frac{5π}{6}$)cos($\frac{π}{3}$+2β)-sin(α+$\frac{5π}{6}$)sin($\frac{π}{3}$+2β)
=-$\frac{2}{3}$•(-$\frac{\sqrt{35}}{6}$)-(-$\frac{\sqrt{5}}{3}$)•$\frac{1}{6}$=$\frac{2\sqrt{35}+\sqrt{5}}{18}$,
故答案為:$\frac{2\sqrt{35}+\sqrt{5}}{18}$.

點評 本題主要考查同角三角函數(shù)的基本關系,誘導公式,兩角和差的正弦公式的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知等差數(shù)列{an}的通項公式為an=3-2n,
求:(1)-37是這個數(shù)列的第幾項?(2)前10項和S10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.$\underset{lim}{x→∞}$$\frac{x-sinx}{x}$=1;$\underset{lim}{x→0}$$\frac{x-sinx}{x}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知一個圓的圓心為A(2,1),且與圓x2+y2-3x=0相交于P1,P2兩點,若|P1P2|=2,求這個圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=$\sqrt{3}$sin(ωx+φ)(ω>0,φ>0)的部分圖象如圖所示,設P,Q分別是圖象的相鄰的最高點和最低點,A是圖象與x軸的交點,若AP⊥AQ,則ω的值為( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.計算:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{{a}^{\frac{2}{3}}+2\root{3}{ab}+4^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)×$\root{3}{a}$;
(2)(x+$\frac{1}{x}$)2-[(x+$\frac{1}{x}$)-$\frac{1}{1-(\frac{1}{x}+x)}$]2÷$\frac{{x}^{2}+\frac{1}{{x}^{2}}-x-\frac{1}{x}+3}{{x}^{2}+\frac{1}{{x}^{2}}-2x+\frac{2}{x}+3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a+a-1=2,則a-a-1的值為( 。
A.0B.2C.-2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.解集{x|x≤1}用區(qū)間表示為( 。
A.[-∞,1]B.(-∞,1]C.[1,+∞)D.[1,+∞]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.直線y=2x+1關于y軸對稱的直線方程為y=-2x+1.

查看答案和解析>>

同步練習冊答案