8.過(1,1)作直線與拋物線y2=x只有一個(gè)公共點(diǎn),這樣的直線有(  )
A.4條B.3條C.2條D.1條

分析 判斷點(diǎn)(1,1)與拋物線的位置關(guān)系,從而得到結(jié)論.

解答 解:拋物線y2=x的焦點(diǎn)為($\frac{1}{4}$,0),(1,1)點(diǎn)在拋物線上,
①當(dāng)過點(diǎn)(1,1)的直線的斜率等于0時(shí),直線的方程為 y=1,與拋物線y2=x的軸平行,只有一個(gè)公共點(diǎn).
②過點(diǎn)(1,1)與拋物線y2=x相切的直線與該拋物線只有一個(gè)公共點(diǎn).
故選:C.

點(diǎn)評 本題考查直線和圓錐曲線的位置關(guān)系,是解題的關(guān)鍵.基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$\overrightarrow{{A}_{1}{A}_{n}}=2\overrightarrow{a}$,$<\overrightarrow{a},\overrightarrow>$=150°,|$\overrightarrow{a}$|=$\sqrt{3}$,則$\overrightarrow{{A}_{1}{A}_{2}}+\overrightarrow{{A}_{2}{A}_{3}}+…+\overrightarrow{{A}_{n-1}{A}_{n}}$(n>0,n∈N+)在$\overrightarrow$方向上的投影為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3x+1)的值域是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則( 。
A.函數(shù)f(x)的最小正周期是2π
B.函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長度得到
C.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對稱
D.函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖所示,$\overrightarrow{|AB}|=2,\overrightarrow{|AC}|=1,∠BAC={120°}$,O為△ABC的內(nèi)心,則$\overrightarrow{AO}•\overrightarrow{AC}$的值為$\frac{{3-\sqrt{7}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個(gè)幾何體的三視圖如圖所示(單位長度:cm),則此幾何體的表面積是24+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{AB}=(λ+1,0,2λ),\overrightarrow{CD}=(6,2μ-1,2)$,$\overrightarrow{AB}$與$\overrightarrow{CD}$共線,則λ+μ=$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)0,1,2,3,4,5,…按以下規(guī)律排列: …,則從2013到2016四數(shù)之間的位置圖形為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中,正確的命題是( 。
A.若a>b,c>d,則ac>bdB.若$\frac{1}{a}>\frac{1}$,則 a<b
C.若b>c,則|a|b≥|a|cD.若a>b,c>d,則a-c>b-d

查看答案和解析>>

同步練習(xí)冊答案