若數(shù)列{an}滿足:a1=1,且an+1=
1
2
an+
1
2n-1
(n∈N*),那么這個(gè)數(shù)列的通項(xiàng)公式是
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:利用遞推思想依次求出數(shù)列{an}的前四項(xiàng),由此能求出這個(gè)數(shù)列的通項(xiàng)公式.
解答: 解:∵數(shù)列{an}滿足:a1=1,且an+1=
1
2
an+
1
2n-1
(n∈N*),
∴a2=
1
2
+1=
3
2
,
a3=
3
4
+
1
2
=
5
4

a4=
5
8
+
1
4
=
7
8
,
由此猜想an=
2n-1
2n-1

故答案為:an=
2n-1
2n-1
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意猜想法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=-
1
5
,α∈(0,π),分別求下列各式的值:
(1)tanα;
(2)
sinαcosα
sin2α-sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足條件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)設(shè)g(x)=f(x)+(2-m)x+2m-1,已知g(x)在[0,1]上有且只有一個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+2x-5的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C,求圓C方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某食品廠為.檢查一條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上的40件產(chǎn)品作為樣本稱出它們的重量(單位:克),作出樣本的頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,則重量超過505克的產(chǎn)品數(shù)量有
 
件;
(2)從流水線上任取3件產(chǎn)品,則其中恰有2件產(chǎn)品的重量超過505克的概率=
 
;(先列式再化成最簡分?jǐn)?shù))
(3)在這40件產(chǎn)品中任取2件,設(shè)ξ為重量超過505克的產(chǎn)品數(shù)量,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x2+a≥2ax的解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=log0.5(6-x-x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域是(-∞,+∞),考察下列四個(gè)結(jié)論:
①若f(-1)=f(1),則f(x)是偶函數(shù);
②若f(-1)<f(1),則f(x)在區(qū)間[-2,2]上不是減函數(shù);
③若f(x)在[a,b)上遞增,且在[b,c]上也遞增,則f(x)在[a,c]上遞增;
④若|f(x)|=|f(-x)|,x∈R,則f(x)是奇函數(shù)或偶函數(shù).
其中正確的結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-3)2+(y-1)2=1關(guān)于直線x-y=0對稱的圓的方程是
 

查看答案和解析>>

同步練習(xí)冊答案